共查询到18条相似文献,搜索用时 85 毫秒
1.
针对Logistic回归模型中的参数估计计算复杂难题,提出一种基于粒子群优化算法(PSO)的估计方法。以最大似然准则作为粒子群优化算法的适应度函数,建立了Logistic回归模型中的参数估算模型。数值仿真分析表明,粒子群优化算法可以更精确地计算出相关参数。 相似文献
2.
3.
基于改进粒子群算法的BP算法的研究 总被引:4,自引:0,他引:4
针对BP算法的缺陷以及标准粒子群算法优化BP网络权值的不足,为了提高算法的全局搜索能力,提出了基于自适应动态调整惯性权重的粒子群算法的BP网络算法.算法根据适应度值的改变情况来调整惯性权重,使惯性权重的改变不依赖于最大迭代次数和当代迭代次数,从而使整个网络具有较快的收敛速度和较小的误差.将算法应用于海参疾病的诊断中.实验发现,基于自适应动态调整惯性权重的粒子群算法的BP算法比基本粒子群算法的BP算法收敛速度快,算法的准确率也比较高,同时改进算法训练的BP网络也比基本粒子群算法训练的BP网络稳定.仿真证明,自适应动态调整惯性权重的粒子群算法对BP算法的优化优于基本粒子群算法. 相似文献
4.
基于粒子群优化算法的Richards模型参数估计和算法有效性 总被引:2,自引:0,他引:2
针对Richards模型参数估计较为困难的实际问题,提出将Richards模型的参数估计问题转化为一个多维无约束函数优化问题。结合谷氨酸菌体的实际生长浓度数据,在Matlab 2012b环境中,利用粒子群优化(PSO)算法建立适应度函数,在最小线性二乘意义下估计Richards模型中的4个参数,并建立了拟合的生长曲线和最优值变化曲线。为进一步验证算法有效性,将PSO算法与该模型传统参数估计法中的四点法和遗传算法(GA)进行了比较,以相关指数和剩余标准差作为评价指标。结果表明,PSO算法对Richards模型的拟合效果良好,对模型的参数估计有着很好的适用性。 相似文献
5.
针对烧结配料系统中的非线性、复杂性和相关性,基于BP神经网络建立烧结配料的预测模型,并采用粒子群算法对预测模型参数进行优化.为了克服粒子群算法的局部收敛性,在迭代过程中,根据迭代次数对惯性权重进行动态非线性调整,从而提高算法的搜索能力.仿真结果表明,所提出的改进粒子群算法与传统的粒子群算法比较,收敛速度快、迭代次数少、... 相似文献
6.
对求解含线性约束优化问题的粒子群算法(LPSO)进行了改进,给出了应用其训练支持向量机(SVM)的方法。改进后的算法在基本PSO惯性权重策略的基础上加入了基于种群收敛速度的自适应扰动,能够较好地调整算法的全局与局部搜索能力之间的平衡。对双螺旋问题的分类实验表明本文提出的方法稳定性好,训练出的SVM具有较高的分类正确率。 相似文献
7.
文献[1]利用带约束的非线性规划,将各种改进的多元线性回归方法——主成分回归、岭回归、稳健回归及约束回归统一在一个非线性规划模型中。应用微粒群优化算法(ParticleSwarmOptimization,PSO)对其进行求解,实际算例表明,该方法不但可行,而且得出的结果比其它方法及文献[3]的结果与实际符合得更好。 相似文献
8.
本文主要介绍了粒子群(Praticle Swarm Optimizer,PSO)算法,它是一种新的基于群体智能的优化算法,是在鸟群觅食行为规律的基础上提出的。他其结构简单、参数调整简单易行,更适合计算机编程处理,但在该算法中,如果粒子速度始终保持较大,容易"飞越"解空间中的最优区域,造成发散现象,收敛不到最优解,如果从惯性权重的自适应方面来调整,就可以很好的解决该问题。 相似文献
9.
10.
非线性模型的参数估计是较为困难的寻优问题,经典方法常会陷入局部极值。由于粒子群算法是一种有效的解决优化问题的群集智能算法,它的突出特点是操作简便、容易实现且全局搜索功能较强,故将粒子群优化算法用于非线性系统模型参数估计,并通过对3种典型的非线性模型的参数估计进行了验证。实验结果表明:粒子群优化算法参数估计精度高,是一种有效的参数估计方法。 相似文献
11.
12.
由于支持向量机的主要参数的选择能够在很大程度上影响分类性能和效果,并且目前参数优化缺乏理论指导,提出一种粒子群优化算法以优化支持向量机参数的方法.该方法通过引入非线性递减惯性权值和异步线性变化的学习因子策略来改善标准粒子群算法的后期收敛速度慢、易陷入局部最优的缺陷.实验结果表明,相对于标准粒子群算法,本方法在参数优化方面具有良好的鲁棒性、快速收敛和全局搜索能力,具有更高的分类精确度和效率. 相似文献
13.
针对飞行器航路规划问题,提出了一种改进粒子群算法.在标准粒子群算法的基础上,对惯性权重系数进行了非线性的调整,对学习因子进行线性和非线性的优化,并引入遗传算法中的交叉算子,将较好粒子与较差粒子进行交叉,保证了种群的多样性,从而提高算法的全局搜索能力.为了验证算法的可行性与有效性,对其进行仿真测试.实验结果表明,与标准粒子群算法、线性惯性权重相比,改进的粒子群算法表现出较强的全局搜索能力和较好的收敛性. 相似文献
14.
15.
非线性回归模型的参数估计是较为困难的寻优问题,经典方法常会陷入局部极值。由于粒子群算法是一种有效的解决优化问题的群集智能算法,它的突出特点是操作简便、容易实现且全局搜索功能较强,故将粒子群优化算法用于非线性系统模型参数估计,并通过对6种非线性回归模型的参数估计进行了验证。实验结果表明:粒子群优化算法是一种有效的参数估计方法。 相似文献
16.
为了提高粒子群优化算法的性能,提出了一种惯性权值调整的改进粒子群优化算法,该算法的惯性权值满足不同。粒子对全局和局部搜索能力的不同需求,每次迭代后根据适应度值对惯性权值做相应的调整。对4个典型的测试函数进行仿真表明,该算法比标准粒子群优化算法有更好的收敛性和更快的收敛速度,改善了优化性能。 相似文献
17.
针对超级电容的模型参数辨识不准确问题,首先分析了超级电容单体的储能原理和性能特点,将二分支等效模型作为超级电容的模型,然后使用最小二乘算法和改进粒子群算法对模型参数进行辨识,最后通过仿真和实验比较两种算法辨识效果,证实该文所提出的改进粒子群算法更能准确地辨识出超级电容模型参数。 相似文献
18.