首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Glass-ceramic and glass Li2S-GeSe2-P2S5 electrolytes were prepared by a single step ball milling (SSBM) process. Various compositions of Li4−xGe1−xPxS2(1+x)Se2(1−x) with/without heat treatment (HT) from x = 0.55 to x = 1.00 were systematically investigated. Structural analysis by X-ray diffraction (XRD) showed gradual increase of the lattice constant followed by significant phase change with increasing GeSe2. HT also affected the crystallinity. Incorporation of GeSe2 in Li2S-P2S5 kept high conductivity with a maximum value of 1.4 × 10−3 S cm−1 at room temperature for x = 0.95 in Li4−xGe1−xPxS2(1+x)Se2(1−x) without HT. All-solid-state LiCoO2/Li cells using Li2S-GeSe2-P2S5 as solid-state electrolytes (SE) were tested by constant-current constant-voltage (CCCV) charge-discharge cycling at a current density of 50 μA cm−2 between 2.5 and 4.3 V (vs. Li/Li+). In spite of the extremely high conductivity of the SE, LiCoO2/Li cells showed a large irreversible reaction especially during the first charging cycle. LiCoO2 with SEs heat-treated at elevated temperature exhibited a capacity over 100 mAh g−1 at the second cycle and consistently improved cycle retention, which is believed to be due to the better interfacial stability.  相似文献   

2.
The all-solid-state Li–In/Li4Ti5O12 cell using the 80Li2S·20P2S5 (mol%) solid electrolyte was assembled to investigate rate performances. It was difficult to obtain the stable performance at the charge current density of 3.8 mA cm−2 in the all-solid-state cell. In order to improve the rate performance, the pulverized Li4Ti5O12 particles were applied to the all-solid-state cell, which retained the reversible capacity of about 90 mAh g−1 at 3.8 mA cm−2. The 70Li2S·27P2S5·3P2O5 glass–ceramic, which exhibits the higher lithium ion conductivity than the 80Li2S·20P2S5 solid electrolyte, was also used. The Li–In/70Li2S·27P2S5·3P2O5 glass–ceramic/pulverized Li4Ti5O12 cell was charged at a current density higher than 3.8 mA cm−2 and showed the reversible capacity of about 30 mAh g−1 even at 10 mA cm−2 at room temperature.  相似文献   

3.
Electrode-electrolyte composite materials were prepared by coating a highly conductive Li2S-P2S5 solid electrolyte onto LiCoO2 electrode particles using pulsed laser deposition (PLD). Cross-sections of the composite electrode layers of the all-solid-state cells were observed using a transmission electron microscope to investigate the packing morphology of the LiCoO2 particles and the distribution of solid electrolyte in the composite electrode. All-solid-state cells based on a composite electrode composed entirely of solid-electrolyte-coated LiCoO2 were fabricated, and their performance was investigated. The coating amounts of Li2S-P2S5 solid electrolytes on LiCoO2 particles and the conductivity of the coating material were controlled to increase the capacity of the resulting all-solid-state cells. All-solid-state cells using LiCoO2 with thick solid electrolyte coatings, grown over 120 min, had a capacity of 65 mAh g−1, without any addition of Li2S-P2S5 solid electrolyte particles to the composite electrode. The capacity of the all-solid-state cell increased further after increasing the conductivity of the Li2S-P2S5 solid electrolyte coating by heat treatment at 200 °C. Furthermore, an all-solid-state cell based on a composite electrode using both a solid electrolyte coating and added solid electrolyte particles was fabricated, and the capacity of the resulting all-solid-state cell increased to 95 mAh g−1.  相似文献   

4.
The Li2S–Cu composite electrode materials were prepared by mechanical milling and applied to all-solid-state lithium cells using the Li2S–P2S5 glass–ceramic electrolyte. The addition of Cu and the mechanical activation improved the electrochemical performance of Li2S in all-solid-state cells. The In/Li2S–Cu cells were charged and then discharged at room temperature, suggesting that Li2S was utilized as a lithium source. The cells exhibited high discharge capacity of about 490 mAh g−1 at the 1st cycle. The SEM and EDX analyses suggested that the amorphous LixCuS domain was partially formed by milling, and the domain played an important role in the improvement of capacity. The electrochemical reaction mechanism of the Li2S–Cu composites was discussed on the basis of the mechanism of the S–Cu composite electrode.  相似文献   

5.
Na-doped Li3−xNaxV2(PO4)3/C (x = 0.00, 0.01, 0.03, and 0.05) compounds have been prepared by using sol-gel method. The Rietveld refinement results indicate that single-phase Li3−xNaxV2(PO4)3/C with monoclinic structure can be obtained. Among three Na-doped samples and the undoped one, Li2.97Na0.03V2(PO4)3/C sample has the highest electronic conductivity of 6.74 × 10−3 S cm−1. Although the initial specific capacities for all Na-doped samples have no much enhancement at the current rate of 0.2 C, both cycle performance and rate capability have been improved. At the 2.0 C rate, Li2.97Na0.03V2(PO4)3/C presents the highest initial capacity of 118.9 mAh g−1 and 12% capacity loss after 80 cycles. The partial substitution of Li with Na (x = 0.03) is favorable for electrochemical rate and cyclic ability due to the enlargement of Li3V2(PO4)3 unit cells, optimizing the particle size and morphology, as well as resulting in a higher electronic conductivity.  相似文献   

6.
A series of cathode materials with molecular notation of xLi[Li1/3Mn2/3]O2·(1 − x)Li[Ni1/3Mn1/3Co1/3]O2 (0 ≤ x ≤ 0.9) were synthesized by combination of co-precipitation and solid state calcination method. The prepared materials were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques, and their electrochemical performances were investigated. The results showed that sample 0.6Li[Li1/3Mn2/3]O2·0.4Li[Ni1/3Mn1/3Co1/3]O2 (x = 0.6) delivers the highest capacity and shows good capacity-retention, which delivers a capacity ∼250 mAh g−1 between 2.0 and 4.8 V at 18 mA g−1.  相似文献   

7.
NH4V3O8·0.2H2O is synthesized by sodium dodecyl sulfonate (SDS) assisted hydrothermal method and its electrochemical performance is investigated. The as-prepared material is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared (IR) spectrum, differential scanning calorimetry and thermal gravimetry (DSC/TG), cyclic voltammetry (CV), and charge-discharge cycling test. The results show a pure NH4V3O8·0.2H2O phase with flake-like morphology is obtained and the average flake thickness is about 150 nm. The NH4V3O8·0.2H2O electrode has a good lithium ion insertion/extraction ability with the highest discharge capacity of 225.9 mAh g−1 during 1.8-4.0 V versus Li at the constant current density of 15 mA g−1. After 30 cycles, it still maintains a high discharge capacity of 209.4 mAh g−1, demonstrating good cyclic stability. Interestingly, at the discharge process a new (NH4)LixV3O8·0.2H2O compound is formed due to the new lithium ion from lithium metal anode.  相似文献   

8.
The thermal properties of Li4/3Ti5/3O4 and Li1+xMn2O4 electrodes were investigated by isothermal micro-calorimetry (IMC). The 150-mAh g−1 capacity of a Li/Li4/3Ti5/3O4 half cell was obtained through the voltage plateau that occurs at 1.55 V during the phase transition from spinel to rock salt. Extra capacity below 1.0 V was attributed to the generation of a new phase. The small and constant entropy change of Li4/3Ti5/3O4 during the spinel/rock-salt phase transition indicated its good thermal stability. Accelerated rate calorimetry confirmed that Li4/3Ti5/3O4 has better thermal characteristics than graphite. The IMC results for a Li/Li1+xMn2O4 half cell indicated less heat variation due to the suppression of the order/disorder change by lithium doping. The heat profiles of the Li4/3Ti5/3O4/Li1+xMn2O4 full cell indicated less heat generation compared with a mesocarbon-microbead graphite/Li1+xMn2O4 cell.  相似文献   

9.
Li2Ti6O13 has been prepared from Na2Ti6O13 by Li ion exchange in molten LiNO3 at 325 °C. Chemical analysis and powder X-ray diffraction study of the reaction product respectively indicate that total Na/Li exchange takes place and the Ti-O framework of the Na2Ti6O13 parent structure is kept under those experimental conditions. Therefore, Li2Ti6O13 has been obtained with the mentioned parent structure. An important change is that particle size is decreased significantly which is favoring lithium insertion. Electrochemical study shows that Li2Ti6O13 inserts ca. 5 Li per formula unit in the voltage range 1.5-1.0 V vs. Li+/Li, yielding a specific discharge capacity of 250 mAh g−1 under equilibrium conditions. Insertion occurs at an average equilibrium voltage of 1.5 V which is observed for oxides and titanates where Ti(IV)/Ti(III) is the active redox couple. However, a capacity loss of ca. 30% is observed due to a phase transformation occurring during the first discharge. After the first redox cycle a high reversible capacity is obtained (ca. 160 mAh g−1 at C/12) and retained upon cycling. Taking into consideration these results, we propose Li2Ti6O13 as an interesting material to be further investigated as the anode of lithium ion batteries.  相似文献   

10.
Small particle-sized orthorhombic LiMnO2 powders were prepared via Pechini's route with Li/Mn molar ratio ranging between 1.00 and 1.20, followed by calcinations at 300 °C in air and heat-treatment at temperatures between 700 and 900 °C for various durations under flowing nitrogen. The effects of heat-treatment conditions and starting Li/Mn molar ratio on the crystalline structure and the electrochemical properties were investigated with XRD, SEM, and capacity retention study. Orthorhombic phase were found exclusively in the samples prepared with starting Li/Mn molar ratios between 1.00 and 1.05 followed by heat-treatment at 800 °C for 15 h, whereas monoclinic Li2MnO3 and tetragonal Li2Mn2O4 were also observed in the samples prepared with Li/Mn ratios higher than 1.10. The charge/discharge curves of capacity retention studies and the cyclic voltammograms showed that the transformation of o-LiMnO2 into cycle-induced spinel phase proceeds more progressively and the capacity loss upon cycling are more significant for the samples containing the impurity phases than the well-ordered o-LiMnO2 sample. The sample synthesized with starting Li/Mn ratio of 1.05 followed by heat treatment at 800 °C for 15 h showed the most promising cycling performance among the prepared powders with the maximum discharge capacity of 158 mAh g−1 at 20th cycle and capacity loss of 3% between 20th and 80th cycles at 30 °C.  相似文献   

11.
We report the effect of Y substitution for Nb on Li ion conductivity in the well-known garnet-type Li5La3Nb2O12. Garnet-type Li5La3Nb2−xYxO12−δ (0 ≤ x ≤ 1) was prepared by ceramic method using the high purity metal oxides and salts. Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), 7Li nuclear magnetic resonance (Li NMR) and AC impedance spectroscopy were employed for characterization. PXRD showed formation of single-phase cubic garnet-like structure for x up to 0.25 and above x = 0.25 showed impurity in addition to the garnet-type phases. The cubic lattice constant increases with increasing Y content up to x = 0.25 in Li5La3Nb2xYxO12−δ and is consistent with expected ionic radius trend. 7Li MAS NMR showed single peak, which could be attributed to fast migration of ions between various sites in the garnet structure, close to chemical shift 0 ppm with respect to solid LiCl and which confirmed that Li ions are distributed at an average octahedral coordination in Li5La3Nb2xYxO12δ. Y-doped compounds showed comparable electrical conductivity to that of the parent compound Li5La3Nb2O12. The x = 0.1 member of Li5La3Nb2xYxO12δ showed total (bulk + grain-boundary) ionic conductivity of 1.44 × 10−5 Scm−1 at 23 °C in air.  相似文献   

12.
Lithium garnet-type oxides Li7−XLa3(Zr2−X, NbX)O12 (X = 0-2) were synthesized by a solid-state reaction, and their lithium ion conductivity was measured using an AC impedance method at temperatures ranging from 25 to 150 °C in air. The lithium ion conductivity increased with increasing Nb content, and reached a maximum of ∼0.8 mS cm−1 at 25 °C. By contrast, the activation energy reached a minimum of ∼30 kJ mol−1 at the same point with X = 0.25. The potential window was examined by cyclic voltammetry (CV), which showed lithium deposition and dissolution peaks around 0 V vs. Li+/Li, but showed no evidence of other reactions up to 9 V vs. Li+/Li.  相似文献   

13.
A homogeneous, composite polymer electrolyte (PE) containing poly(ethylene oxide) (PEO), CF3SO3Li and 33 wt.% of aluminum carboxylate [RC(O)OAlEt2]2 with an oligooxyethylene group R = CH2CH2C(O)O(CH2CH2O)nCH3 (n = 7) (AlCarb7), characterized by low glass transition temperature Tg = −51.4 °C was prepared. The interaction of aluminum carboxylate with various lithium salts was characterized on the basis of 27Al NMR spectroscopy in CDCl3 solutions. The bulk conductivity of solid PE with AlCarb7 is of the order of 10−5 S cm−1 at 60 °C and 10−4 S cm−1 at 90 °C. Electrochemical tests of Li|PE|Li cells showed a decrease in the RSEI with temperature, stabilizing at about 10 Ω cm−2. The lithium ion transference numbers determined by ac–dc polarization experiments range from 0.7 to 0.9. 7Li, 19F and 1H NMR spectra, the relaxation time and diffusion data were obtained. The calculated lithium transference number t+ at 50 °C is equal to 0.995, which suggests practically complete immobilization of the triflate salt anions. In the range of high temperatures (130–180 °C) t+ is equal 0.35–0.39. The dependence of t+ on temperature should probably be connected with the partial dissociation of the aluminum carboxylate and lithium salt complex.  相似文献   

14.
Cathode materials prepared by a co-precipitation are 0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (0.2 ≤ x ≤ 0.4) cathode materials with a layered-spinel structure. In the voltage range of 2.0-4.6 V, the cathodes show more than one redox reaction peak during its cyclic voltammogram. The Li/0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (x = 0.3, y = 0.2) cell shows the initial discharge capacity of about 200 mAh g−1. However, when x = 0.2 and y = 0.1, the cell exhibits a rapid decrease in discharge capacity and poor cycle life.  相似文献   

15.
All-solid-state lithium secondary batteries using LiCoO2 particles coated with amorphous Li2O-TiO2 films as an active material and Li2S-P2S5 glass-ceramics as a solid electrolyte were fabricated; the electrochemical performance of the batteries was investigated. The interfacial resistance between LiCoO2 and solid electrolyte was decreased by the coating of Li2O-TiO2 films on LiCoO2 particles. The rate capability of the batteries using the LiCoO2 coated with Li2Ti2O5 (Li2O·2TiO2) film was improved because of the decrease of the interfacial resistance of the batteries. The cycle performance of the all-solid-state batteries under a high cutoff voltage of 4.6 V vs. Li was highly improved by using LiCoO2 coated with Li2Ti2O5 film. The oxide coatings are effective in suppressing the resistance increase between LiCoO2 and the solid electrolyte during cycling. The battery with the LiCoO2 coated with Li2Ti2O5 film showed a large initial discharge capacity of 130 mAh/g and good capacity retention without resistance increase after 50 cycles at the current density of 0.13 mA/cm2.  相似文献   

16.
Li2CoSiO4 has been prepared successfully by a solution route or hydrothermal reaction for the first time, and its electrochemical performance has been investigated primarily. Reversible extraction and insertion of lithium from and into Li2CoSiO4 at 4.1 V versus lithium have shown that this material is a potential candidate for the cathode in lithium ion batteries. At this stage reversible electrochemical extraction was limited to 0.46 lithium per formula unit for the Li2CoSiO4/C composite materials, with a charge capacity of 234 mAh g−1 and a discharge capacity of 75 mAh g−1.  相似文献   

17.
We report on a novel method for in situ lithiation of lithium free TiS2 using Li3N in an all-solid-state battery configuration. This method was tested using a Li3N-TiS2-80Li2S:20P2S5 composite positive electrode and an indium metal negative electrode. It is shown that approximately 37% of Li3N spontaneously decomposes during composite preparation regardless of the composition. Solid-state battery cells built with a 3:1 stoichiometric ratio of Li:Ti demonstrated a high 1st cycle charge capacity of 287 mAh g−1, 20% greater than the theoretical capacity of TiS2 at 239 mAh g−1. The difference provides an excess capacity in the indium metal negative electrode.  相似文献   

18.
A new type of Li1−xFe0.8Ni0.2O2–LixMnO2 (Mn/(Fe + Ni + Mn) = 0.8) material was synthesized at 350 °C in air atmosphere using a solid-state reaction. The material had an XRD pattern that closely resembled that of the original Li1−xFeO2–LixMnO2 (Mn/(Fe + Mn) = 0.8) with much reduced impurity peaks. The Li/Li1−xFe0.8Ni0.2O2–LixMnO2 cell showed a high initial discharge capacity above 192 mAh g−1, which was higher than that of the parent Li/Li1−xFeO2–LixMnO2 (186 mAh g−1). We expected that the increase of initial discharge capacity and the change of shape of discharge curve for the Li/Li1−xFe0.8Ni0.2O2–LixMnO2 cell is the result from the redox reaction from Ni2+ to Ni3+ during charge/discharge process. This cell exhibited not only a typical voltage plateau in the 2.8 V region, but also an excellent cycle retention rate (96%) up to 45 cycles.  相似文献   

19.
In order to search for cathode materials with better performance, Li3(V1−xMgx)2(PO4)3 (0, 0.04, 0.07, 0.10 and 0.13) is prepared via a carbothermal reduction (CTR) process with LiOH·H2O, V2O5, Mg(CH3COO)2·4H2O, NH4H2PO4, and sucrose as raw materials and investigated by X-ray diffraction (XRD), scanning electron microscopic (SEM) and electrochemical impedance spectrum (EIS). XRD shows that Li3(V1−xMgx)2(PO4)3 (x = 0.04, 0.07, 0.10 and 0.13) has the same monoclinic structure as undoped Li3V2(PO4)3 while the particle size of Li3(V1−xMgx)2(PO4)3 is smaller than that of Li3V2(PO4)3 according to SEM images. EIS reveals that the charge transfer resistance of as-prepared materials is reduced and its reversibility is enhanced proved by the cyclic votammograms. The Mg2+-doped Li3V2(PO4)3 has a better high rate discharge performance. At a discharge rate of 20 C, the discharge capacity of Li3(V0.9Mg0.1)2(PO4)3 is 107 mAh g−1 and the capacity retention is 98% after 80 cycles. Li3(V0.9Mg0.1)2(PO4)3//graphite full cells (085580-type) have good discharge performance and the modified cathode material has very good compatibility with graphite.  相似文献   

20.
Fe-substituted Li2MnO3 including a monoclinic layered rock-salt structure (C2/m), (Li1+x(FeyMn1−y)1−xO2, 0 < x < 1/3, 0.1 ≤ y ≤ 0.5) was prepared by coprecipitation-hydrothermal-calcination method. The sample was assigned as two-phase composite structure consisting of the cubic rock-salt () and monoclinic ones at high Fe content above 30% (y ≥ 0.3), while the sample was assigned as a monoclinic phase (C2/m) at low Fe content less than 20%. In the monoclinic Li2MnO3-type structure, the Fe ion tends to substitute a Li (2b) site, which corresponds to a center position of Mn4+ hexagonal network in Mn-Li layer. The electrochemical properties including discharge characteristics under high current density (<3600 mA g−1 at 30 °C) and low temperature (<−20 °C at 40 mA g−1) were severely affected by chemical composition (Fe content and Li/(Fe + Mn) ratio), crystal structure (monoclinic phase content) and powder property (specific surface area). Under the optimized Fe content (0.2 < y < 0.4), the Li/sample cells showed high initial discharge capacity (240-300 mAh g−1) and energy density (700-950 mWh g−1) between 1.5 and 4.8 V under moderate current density, 40 mA g−1 at 30 °C. Results suggest that Fe-substituted Li2MnO3 would be a non-excludable 3 V positive electrode material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号