首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polytetrafluoroethylene (PTFE) was modified by Ar plasma with different exposure times. The plasma-activated surface was immersed in biphenyldithiol and subsequently in colloidal solution of Au nanoparticles. The changes in the surface wettability contact angle were examined by goniometry. Atomic force microscopy was used to determine the surface roughness and morphology. Changes in the chemical structure of the modified PTFE were studied using X-ray photoelectron spectroscopy (XPS) and electrokinetic analysis. The interaction of plasma-treated and grafted samples with vascular smooth muscle cell derived from the rat aorta was also studied. Specifically, the number and morphology of the adhered and proliferated cells on the PTFE were studied under in vitro conditions. The plasma treatment and the subsequent biphenyldithiol and Au nanoparticles grafting led to changes in the polymer surface chemistry, morphology, roughness and wettability. The polymer grafting with biphenyl-4,4′-dithiol (BFD) and subsequently with Au nanoparticles led to a decrease in the surface polarity. XPS measurements proved the presence of S and Au on the PTFE surface. Grafting with BFD and Au nanoparticles led to the decrease in surface roughness. In comparison with the pristine polymer, the plasma treatment and Au nanoparticles grafting increased the adhesion and proliferation of vascular smooth muscle cell.  相似文献   

2.
Carbon nano-structures find their application in bio-medicine. In this work we functionalized carbon nano-particles (CNPs) with nitrogen (amine) groups. The CNPs were then chemically grafted onto the surface of polyethyleneterephthalate (PET) and high density polyethylene (HDPE) previously treated (activated) in argon plasma. Transmission electron microscopy (TEM) was used for investigation of the size and form of reactivated CNPs. Chemical composition of the modified polymer surfaces was determined by Raman and X-ray photoelectron (XPS) spectroscopies and by an electrokinetic analysis (zeta potential) as well. Surface contact angle was measured by goniometry. Surface roughness and morphology of polymers grafted with CNPs was studied using atomic force microscopy (AFM). Adhesion and proliferation of vascular smooth muscle cells (VSMC) on CNPs grafted HDPE and PET surfaces were studied in vitro. TEM results show that CNPs aggregate in water solution. Successful grafting of CNPs on the HDPE and PET surfaces was proved by XPS and Raman spectroscopies (amorphous carbon in the form of sp2 hybridization) and by AFM. CNPs grafting of polymer surfaces leads to a decrease of contact angle and also to a change in surface zeta potential. Grafting with CNPs has a positive effect on adhesion and proliferation of VSMC on polymers’ surface.  相似文献   

3.
The grafted homopolymer and comb‐shaped copolymer of polyacrylamide were prepared by combining the self‐assembly of initiator and water‐borne surface‐initiated atom transfer radical polymerization (SI‐ATRP). The structures, composition, properties, and surface morphology of the modified PET films were characterized by FTIR/ATR, X‐ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electronic microscopy (SEM). The results show that the surface of PET films was covered by equable grafting polymer layer after grafted polyacrylamide (PAM). The amount of grafting polymer increased linearly with the polymerization time added. The GPC date show that the polymerization in the water‐borne medium at lower temperature (50°C) shows better “living” and control. After modified by comb‐shaped copolymer brushes, the modified PET film was completely covered with the second polymer layer (PAM) and water contact angle decreased to 13.6°. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
This work deals with characterization of polypropylene (PP) exposed to plasma discharge and gold layers deposited on the plasma modified PP. PP foils were exposed to Ar plasma and subsequently metallized with sputtered Au layer. Chemical structure of the plasma modified PP was studied using X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering (RBS). Wettability of the plasma modified PP and its changes during sample aging were determined by goniometry. Surface morphology of PP and deposited Au layers was measured with atomic force microscopy (AFM). Continuity of Au layers was characterized by measuring their sheet resistance. With increasing exposure time in the plasma discharge the water contact angle decreases and the polymer surface becomes more hydrophilic. During the aging of the plasma treated samples the contact angle increases again. Plasma treatment leads to a decrease of the PP surface roughness and to generation of oxygen-containing polar groups on PP surface. During sample aging the concentration of the oxygen-containing groups decreases.  相似文献   

5.
Surface‐initiated atom transfer radical polymerization (ATRP) from poly(ethylene terephthalate) (PET) film was studied. Poly(methyl methacrylate) (PMMA), poly (acrylamide) (PAAM), and their diblock copolymer (PMMA/PAAM) on the surface of PET film were successfully prepared by surface‐initiated ATRP. The structures and properties of the modified PET film were characterized by FT‐IR/ATR, X‐ray photoelectron spectroscopy (XPS), measurements of contact angles, and scanning electronic microscopy (SEM). The results indicate that the surface properties of PET film were greatly improved by grafted polymer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Surface modification of carbon fibre (CF) by well‐defined polymer brushes was carried out using the ‘grafting from’ method. Poly(methyl methacrylate)‐grafted carbon fibre (CF‐PMMA) was successfully prepared by surface‐initiated atom‐transfer radical polymerization (SI‐ATRP) of methyl methacrylate (MMA) from the macro‐initiator, bromo‐acetic ester‐modified carbon fibre (CF‐BrA), with the complex of 1,10‐phenanthroline and Cu(I)Br as catalyst. The percentage of grafting (PG%) and the conversion of monomer (C%) increased linearly with increasing of polymerization time, and reached 24.0 % and 6.7 %, respectively, after a polymerization time of 6 h, calculated from the elemental analyses (EA). The structural and surface morphological analyses were conducted with Fourier‐transform infrared (FTIR) spectroscopy, X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Copyright © 2005 Society of Chemical Industry  相似文献   

7.
Surface functional modification of nanosized α-alumina is an effective way to improve its dispersion in polymer and to enhance interfacial agglutinate force between particles and polymer. In this paper, diphenylmathane-4,4'-diisocyanate(MDI) was used as a surface grafting agent to react with the hydroxyl group on the surface of nanosized α-alumina. The surface properties of the grafted α-alumina were studied by FT-IR spectra X-ray photoelectron spectroscopy(XPS), surface tensiometer and transmission electron microscope (TEM). It was found that the reaction between the isocyanate group and the hydroxyl group on the surface of α-alumina nanoparticles was attribute to additional reaction of the double bond between C and N in the isocyanate group. The surface of MDI grafted α-alumina nanoparticles showed an extremely hydrophobic property and good dispersibility in ethanol. The most important influence was that there was a quantity of isocyanate groups with an active chemical property on the surface of the grafted particles, which could readily react with compounds containing -OH, -NH2 or -COOH groups.  相似文献   

8.
Poly(ethylene terephthalate) (PET) film was exposed to oxygen plasma glow discharge to produce peroxides on its surface. These peroxides were then used as catalysts for the polymerization of 8‐quinolinyl acrylate (QA) to prepare the PET grafted with QA (PET‐Q). The surface‐modified PET was characterized by attenuated total reflection Fourier transform infrared spectroscopy (ATR‐FTIR) and X‐ray photoelectron spectroscopy (XPS). The introduction of QA to the PET surface was confirmed by observing the presence of nitrogen in the XPS survey scan and high‐resolution spectra. The amount of QA grafted on to the PET surface as measured by the gravimetric method was about 5.2 μg cm?2. The antibacterial activity of the surface‐modified PET texture was investigated by using a shake‐flask and an inhibition zone test method. After 6 h of shaking, the PET grafted with QA showed the inhibition (91%) of the growth of the gram‐positive microorganism, S. aureus. Even after laundering ten times, an effectiveness of the inhibition was found. However, little inhibition was shown with the gram‐negative microorganism, K. pneumoniae. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 863–868, 2006  相似文献   

9.
The protonation of solution-coated emeraldine (EM) base by sulfonic and carboxylic acid groups on surface-functionalized low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), poly(ethylene terephthalate) (PET), and polytetrafluoroethylene (PTFE) films were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and conductivity measurements. Surface functionalizations were achieved by sulfonation (for LDPE, HDPE, PP, and PET), by hydrolysis (for PET), and by near-UV-light-induced surface graft copolymerization with the Na salt of styrene sulfonic acid and acrylic acid (for all substrates). The efficiency of surface functionalization by graft copolymerization is substantially enhanced for substrates pretreated with O3 or Ar plasma. Protonation levels of 50% can be readily achieved for EM coated on sulfonic acid, but not carboxylic acid, functionalized surfaces. The extent of protonation, however, is also dependent on the microstructures of the modified substrate surfaces. In all cases, charge transfer interactions between the EM layer and the functionalized substrates readily result in good adhesion of the electroactive polymer on the polymer substrates to give rise to conductive surface structures. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
This article describes a divergent strategy to prepare grafted polymer chains with functional end groups for surface modification of nanoparticles with other functional groups. This preparation is achieved through a combination of surface-initiated atom transfer radical polymerization (ATRP) and click chemistry. First, the surface of the silica nanoparticles was modified with polystyrene (PSt) brushes via the “grafting from” approach. The terminal bromides of PSt-grafted silica nanoparticles were then substituted with azido groups. These azido-terminated PSt brushes on the nanoparticle surface were reacted with various alkyne-terminated functional end groups via click reactions. In all cases, FTIR and 1H NMR spectra indicated quantitative transformation of the chain ends of polystyrene brushes on silica nanoparticles into the desired functional group.  相似文献   

11.
12.
The surface of a polyethylene terephthalate (PET) spunbond nonwoven was modified by using atmospheric pressure He/O2 plasma treatment. Accessibility of the modified PET nonwoven has been investigated in terms of crystallinity, surface chemical composition, hydrophilicity, and dye uptake. Differential scanning calorimetry (DSC) for crystallinity measurement and X‐ray photoelectron spectroscopy (XPS) for chemical composition measurement were used. Surface morphology was studied by using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Percentage crystallinity increased due to the depletion of amorphous region by plasma etching. Redeposition of etched particles was observed. Oxygen‐based functional groups on the surface of PET increase from 27 to about 32% after 90 s exposure. Wettability increases by more than 10 times and moisture regain increases by three times, compared with the untreated sample. Dye uptake was not changed significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4306–4310, 2006  相似文献   

13.
Van Giang Ngo  Christine Leroux 《Polymer》2009,50(14):3095-3297
Surface of titania nanoparticles (TiO2) was modified by a coupling agent as 3-(trimethoxysilyl)propyl methacrylate (MPS) to form TiO2-MPS polymerizable particles. Methyl methacrylate (MMA) and tert-butyldimethylsilyl methacrylate (MASi) were radically polymerized through the immobilized vinyl bond on the surface in the presence of the reversible addition-fragmentation chain transfer (RAFT) agent 2-cyanoprop-2-yl dithiobenzoate using 2,2′-azobisisobutylnitrile (AIBN) as an initiator. FTIR spectroscopy confirmed the presence of the coupling molecule and the methacrylate groups on the surface. Thermogravimetric analysis and elemental analysis revealed a surface coverage of the coupling molecule of 2.0 wt%. TGA measurements showed that grafted PMMA and PMASi were accounted for 10% and 4.8% of the particle mass, respectively. 1H NMR and SEC were used to verify the livingness of the polymerization. Transmission electron microscopy (TEM) was used to study the morphology of the particles before and after the surface grafting.  相似文献   

14.
Poly(γ‐methacryloxypropyltrimethoxysilane) (PMPTS)‐grafted silica hybrid nanoparticles were prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP). The resulting PMPTS‐grafted silica hybrid nanoparticles were characterized using Fourier transform infrared spectroscopy (FTIRS), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), X‐ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), static water contact angle (WCA) measurement, and thermogravimetric analysis (TGA). Combined FTIRS, NMR, XPS, SEM, and TGA studies confirmed that these hybrid nanoparticles were successfully prepared by surface‐initiated ATRP. SEM and AFM studies revealed that the surfaces of the nanoparticles were rough at the nanoscale. In addition, the results of the static WCA measurements showed that the nanoparticles are of low surface energy and their surface energy reaches as low as 6.10 mN m?1. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Polyelectrolyte multilayers with in situ Au nanoparticles were prepared by alternate immersion of a substrate in poly(allylamine hydrochloride) (PAH)-AuCl4 complexes solution and poly(acrylic acid) solution for layer-by-layer self assemble process followed by reduction of the metal cations Au3+ through immersion into a fresh NaBH4 solution. UV–vis spectrum, atomic force microscopy (AFM), X-ray photoelectron spectra (XPS), and transmission electron microscope (TEM) were used to confirm the construction of multilayers and synthesis of the Au nanoparticles. The nanotribological behaviors also have been studied using AFM. The polyelectrolyte multilayers with in situ Au nanoparticles exhibited a lower surface adhesion and friction force than the pure polyelectrolyte multilayers due to the nanoparticles improved the mutilayers surface structure and possess a good load-carrying capacity in nanoscale.  相似文献   

16.
Several antistatic nanocomposite hybrid coatings based on epoxy-silane developed by sol–gel method are studied. The hybrid sols are prepared by hydrolysis and condensation of GPTMS and TMOS precursors in the presence of an acid, as catalyst, and EDA as curing agent. Considering their good electrical conductivity, indium tin oxide (ITO) nanoparticles are used as antistatic agents. To improve the distribution/dispersion of ITO nanoparticles in the polymer matrix, the surface of nanoparticles is modified with silane groups (m-ITO). The antistatic properties of the coatings, containing various amounts of m-ITO nanoparticles, are investigated through surface electrical resistivity measurements. FTIR is used to screen the reaction of epoxy groups and the effect of EDA on crosslinking in the hybrid coatings. Morphology, nanoparticle distribution and surface roughness of the coatings are studied through SEM and AFM microscopy techniques. Also, homogeneous distribution of ITO nanoparticles within the polymer matrix is confirmed by EDXA elemental mapping. The cubic shape and nanometric size of the nanoparticles in the hybrid coatings are monitored by transmission electron microscopy (TEM).  相似文献   

17.
Silicone rubber has been used as a biomaterial for more than two decades and displays good mechanical and optical properties, but its chemical nature, poor antithrombogenicity, as well as its hydrophobicity, prevents its use in many demanding biomedical applications. In order to provide modified silicone with enhanced haemocompatibility, surface modification techniques were used. Ozonization was used to introduce active peroxide groups onto the silicone film surface and, subsequently, graft polymerization of N,N′‐dimethyl‐N‐methacryloyloxyethyl‐N‐(3‐sulfopropyl) ammonium (DMMSA), a zwitterionic sulfobetaine structure, onto the ozone activated silicone surface was conducted. Surface analysis was accomplished by means of attenuated total reflectance‐Fourier‐transform infrared (ATR‐FTIR), and X‐ray photoelectron spectra (XPS), and scanning electron microscopy (SEM) and contact angle measurement. ATR‐FTIR and XPS investigation confirmed the graft polymerization. The grafted film possessed a relatively hydrophilic surface as indicated by contact angle measurement. The blood compatibility of the grafted films was evaluated by platelet adhesion in platelet‐rich plasma (PRP) and protein adsorption in bovine fibrinogen using silicone film as the reference. No platelet adhesion was observed for the grafted films incubated in PRP for 120 min. The protein adsorption was reduced on the grafted films after incubated in bovine fibrinogen for 120 min. These results confirmed that the improved blood compatibility was obtained by grafting this new zwitterronic sulfobetaine structure onto silicone film. Copyright © 2003 Society of Chemical Industry  相似文献   

18.
To reduce the surface protein adsorption of polysulfone (PSf) film, we improved the hydrophilicity of this film by photochemical grafting of methoxypoly (ethylene glycol) (MPEG) derivatives on its surface. Grafting was achieved with both the simultaneous method and the sequential method. Surface analysis of the grafted film by X‐ray photoelectron spectroscopy (XPS) revealed that the PEG chains had successfully grafted onto the surface of the film. The grafting efficiencies by simultaneous and sequential methods were 20.8% and 10.2%, respectively. With an atomic force microscope (AFM), the surface topography of PEG‐grafted films by these two methods was compared. Static water contact angle measurement indicated that the surface hydrophilicity of the film had been improved. Protein adsorption measurement showed that the surface protein adsorption of the modified film was significantly reduced compared with that of the unmodified PSf film. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3818–3826, 2007  相似文献   

19.
Grafting of polymer brushes on the poly(vinylidene fluoride) (PVDF) films was carried out by the surface‐initiated free radical polymerization. Surface‐initiators were immobilized on the PVDF films by surface hydroxylation and esterification of the surface‐tethered hydroxyl groups with 4,4′‐azobis(4‐cyanopentanoic acid) (ACP). Homopolymer brushes of methyl methacrylate (MMA) were prepared by free radical polymerization from the azofunctionalized PVDF surface. The chemical composition and topography of the graft‐functionalized PVDF surfaces were characterized by X‐ray photoelectron spectroscopy (XPS), attenuated total reflectance (ATR) FTIR spectroscopy, and atomic force microscopy (AFM). Kinetics study revealed an exponential increase in the graft concentration of polymer brushes with the reaction time, indicating that the chain growth from the surface was consistence with a chain polymerization. Water contact angles on PVDF films were reduced by surface grafting of MMA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 857–862, 2006  相似文献   

20.
Two different procedures of grafting with silver nanoparticles (AgNP) of polyethylene terephthalate (PET), activated by plasma treatment, are studied. In the first procedure, the PET foil was grafted with biphenyl-4,4′-dithiol and subsequently with silver nanoparticles. In the second one, the PET foil was grafted with silver nanoparticles previously coated with the same dithiol. X-ray photoelectron spectroscopy and electrokinetic analysis were used for characterization of the polymer surface at different modification steps. Silver nanoparticles were characterized by ultraviolet-visible spectroscopy and by transmission electron microscopy (TEM). The first procedure was found to be more effective. It was proved that the dithiol was chemically bonded to the surface of the plasma-activated PET and that it mediates subsequent grafting of the silver nanoparticles. AgNP previously coated by dithiol bonded to the PET surface much less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号