共查询到20条相似文献,搜索用时 62 毫秒
1.
《数字社区&智能家居》2008,(Z2)
本文描述了在应用蚁群算法求解资源受限项目调度问题时,蚂蚁如何在项目网络图上巡游并动态生成最优解,以及蚁群信息素的更新方式和多种启发式信息的定义方法,验算了算法在不同的参数组合下对测试案例的求解效果。 相似文献
2.
通过分析多模式项目调度问题的特点,提出一种主、从递阶结构的蚁群粒子群求解算法。算法中,主级为蚁群算法,完成任务模式选择;从级为粒子群算法,完成主级约束下的任务调度。然后,以工期最小和资源均衡分配为目标设计蚂蚁转移概率、模式优选概率和任务优选概率。最后,针对PSPLIB中的测试集对算法主要参数进行优化,并通过与其他算法比较验证了算法的有效性。 相似文献
3.
黄少荣 《计算机应用与软件》2012,29(8):153-155,159
针对以工期最短为优化目标的多模式资源约束项目调度问题进行研究,在建立数学模型的基础上,通过设计合适的编码方式和调度生成策略,生成问题的构建图,定义新的信息素表示和启发式信息,提出一种改进的蚁群系统算法优化求解该问题。将模型和算法在工程项目调度实例中加以应用,验证了所提出的优化调度方法的正确性和有效性。 相似文献
4.
针对资源受限项目调度问题,提出了一种基于人工蜂群算法的优化方法。人工蜂群算法中每个食物源的位置代表一种项目任务的优先权序列,每个食物源的位置通过扩展串行调度机制转换成可行的调度方案,迭代中由三种人工蜂执行不同的操作来实现全局最优解的更新。实验结果表明,人工蜂群算法是求解资源受限项目调度问题的有效方法,同时扩展调度机制的引入可以加速迭代收敛的进程。 相似文献
5.
针对以最小化项目工期为目标的资源受限项目调度问题(RCPSP),提出将模拟退火算法融合到遗传算法中,以改善遗传算法局部搜索性能,增强进化能力的遗传模拟退火算法——RCPSPGSA。在每次进化迭代过程中,下一代种群的个体需经过模拟退火算法改进,并通过在每次迭代结束前进行降温操作保证遗传算法和模拟退火算法具有相同的收敛方向和速度。算法在RCPSP标准测试问题库PSPLIB上进行数值仿真实验,并采用正交实验分析法解决参数选择问题。实验结果证明选择的参数组合具有突出的性能,RCPSPGSA是求解RCPSP的有效算法。 相似文献
6.
资源受限的项目调度问题的求解算法 总被引:1,自引:0,他引:1
本文建立了不确定资源环境下的资源受限的项目调度模型,用不确定规划的方法将不确定问题转化为等价的确定性问题,并给出了一个解决该问题的二阶段算法及实例。 相似文献
7.
不确定资源受限项目调度问题(RCPSP)是研究在不确定环境和有限资源约束下如何合理安排项目活动,以实现既定目标的最优化.不确定RCPSP具有很强的工程背景,在学术和应用上均具有很高的研究价值,但存在大规模、强约束、多极小、多目标和不确定等诸多复杂性,求解非常困难.为此,介绍了不确定RCPSP的数学描述和几种具体形式,重点综述了不确定RCPSP的算法进展,并归纳了相关的应用成果,最后指出了有待进一步研究的若干方向和内容. 相似文献
8.
9.
在资源受限项目调度问题中,将可更新资源进一步拓展为具有胜任力差异的人力资源,建立考虑胜任力差异的人力资源受限多目标项目调度问题模型.该模型是对传统多模式资源约束项目调度问题更接近研发项目群实际的扩展.针对模型提出两阶段优化算法,第1阶段是项目时序约束优化阶段,采用蚁群算法(ACO)进行任务列表的优化求解,通过对信息素增量规则的改进、串联进度生成机制(SSGS)及资源冲突消解策略的使用,使蚁群算法的求解效率和质量得以提高;第2阶段是资源约束优化阶段,以第1阶段求得的优化任务列表为输入,逐项对人力资源约束进行核查与调整,最终生成项目调度的优化方案.数值实验表明,考虑胜任力差异的数学优化模型更符合研发项目群管理实践,同时两阶段算法在求解质量方面具有良好性能. 相似文献
10.
资源受限项目调度问题(resource constrained project scheduling problem, RCPSP)要求在满足相关约束的条件下安排各活动开始时间,从而达到某一目标的最优,具有很强的应用背景,并受到众多学者的广泛关注.经典的RCPSP模型以最小化项目工期为单一目标,忽略了资源使用率等因素对项目整体的影响,使其与实际应用仍有较大差距.基于经典的RCPSP模型,引入最优资源均衡为另一目标,将模型扩展为多目标模型,丰富了RCPSP模型的应用场景.同时,考虑到新模型中各活动间存在大量的控制关系,使用传统的启发式多目标算法需要耗费大量的时间对不可行解进行判断,求解性能较低,提出一种新的算法框架NSGA-IIs.该算法框架基于活动间控制关系将各活动分成若干子集,并在初始化和交叉变异等阶段以子集为基本单位产生新的个体,能够较好地避免不可行解的产生,提高算法的效率.使用解集覆盖度作为评价指标,通过实例数据集的实验表明,与已有的求解RCPSP的经典算法相比,所提出的算法具有明显的优越性. 相似文献
11.
Ewa Ratajczak-Ropel 《控制论与系统》2013,44(5-6):296-316
ABSTRACTIn this paper, a rank-based nonparametric statistical test for measuring the effect of cooperation between optimization agents solving the multi-mode resource-constrained project scheduling problem is presented. To solve this NP-hard optimization problem, different methods are applied including population- and agent-based approaches. One of them is a team of asynchronous agents composed of multiple optimization agents, management agents, and common memories, which through interactions produce solutions of hard optimization problems. Optimization agents represent different methods including local search, path relinking, or tabu search. Interactions are managed through various cooperation strategies based on applying heuristics, reinforcement learning, or population learning. 相似文献
12.
13.
Constraint Propagation and Decomposition Techniques for Highly Disjunctive and Highly Cumulative Project Scheduling Problems 总被引:3,自引:0,他引:3
In recent years, constraint satisfaction techniques have been successfully applied to disjunctive scheduling problems, i.e., scheduling problems where each resource can execute at most one activity at a time. Less significant and less generally applicable results have been obtained in the area of cumulative scheduling. Multiple constraint propagation algorithms have been developed for cumulative resources but they tend to be less uniformly effective than their disjunctive counterparts. Different problems in the cumulative scheduling class seem to have different characteristics that make them either easy or hard to solve with a given technique. The aim of this paper is to investigate one particular dimension along which problems differ. Within the cumulative scheduling class, we distinguish between highly disjunctive and highly cumulative problems: a problem is highly disjunctive when many pairs of activities cannot execute in parallel, e.g., because many activities require more than half of the capacity of a resource; on the contrary, a problem is highly cumulative if many activities can effectively execute in parallel. New constraint propagation and problem decomposition techniques are introduced with this distinction in mind. This includes an O(n2) edge-finding algorithm for cumulative resources (where n is the number of activities requiring the same resource) and a problem decomposition scheme which applies well to highly disjunctive project scheduling problems. Experimental results confirm that the impact of these techniques varies from highly disjunctive to highly cumulative problems. In the end, we also propose a refined version of the edge-finding algorithm for cumulative resources which, despite its worst case complexity in O(n3) , performs very well on highly cumulative instances. 相似文献
14.
15.
在充分考虑公交公司运营成本和乘客候车等待成本的基础上,引入了乘客坐车舒适度这一指标建立了公交调度优化模型。针对基本遗传算法在实际应用中出现进化缓慢和提前收敛的问题,利用蚁群算法具有局部搜索能力强和收敛速度比较快等优点,引入了蚁群算法引导变异,建立了自适应的遗传算法,实现了模型求解的高效性和高精度。 相似文献
16.
提出了一种新的用于求解TSP问题的智能蚁群优化算法。新算法从TSP问题本身出发,提取出了该问题的一种本质特征,并赋予蚁群算法中的精英蚂蚁以识别该固有特征的能力,以提高精英蚂蚁的搜索质量,进而使得新算法整体的求解能力得以提高。文章中不仅阐述了新算法的原理,而且进行了仿真实验,实验结果表明新算法在求解时间和求解质量上都取得了很好的效果。 相似文献
17.
Scheduling for the flexible job shop is very important in both fields of production management and combinatorial optimization.
In this work, a double layer Ant Colony Optimization (ACO) algorithm is proposed for the Flexible Job Shop Scheduling Problem
(FJSSP). In the proposed algorithm, two different ACO algorithms are applied to solve the FJSSP with a hierarchical way. The
primary mission of upper layer ACO algorithm is achieving an excellent assignment of operations to machines. The leading task
of lower layer ACO algorithm is obtaining the optimal sequencing of operations on each machine. Experimental results suggest
that the proposed algorithm is a feasible and effective approach for the multi-objective FJSSP.
相似文献
Li-Ning XingEmail: |
18.
19.
Hybridization in optimization methods plays a very vital role to make it effective and efficient. Different optimization methods have different search tendency and it is always required to experiment the effect of hybridizing different search tendency of the optimization algorithm with each other. This paper presents the effect of hybridizing Biogeography-Based Optimization (BBO) technique with Artificial Immune Algorithm (AIA) and Ant Colony Optimization (ACO) in two different ways. So, four different variants of hybrid BBO, viz. two variants of hybrid BBO with AIA and two with ACO, are developed and experimented in this paper. All the considered optimization techniques have altogether a different search tendency. The proposed hybrid method is tested on many benchmark problems and real life problems. Friedman test and Holm–Sidak test are performed to have the statistical validity of the results. Results show that proposed hybridization of BBO with ACO and AIA is effective over a wide range of problems. Moreover, the proposed hybridization is also effective over other proposed hybridization of BBO and different variants of BBO available in the literature. 相似文献
20.
资源不确定性高和调度鲁棒性要求高是跨企业项目调度问题的重要特征,本文采用资源置信度度量资源的不确定性,建立了考虑资源置信度约束的跨企业项目鲁棒性优化调度模型,设计了路径重连求解算法.算法以路径重连机制搜索解空间,以嵌入 的启发式时间缓冲插入算法快速生成鲁棒性调度,并可通过局部增强搜索算法进一步优化调度的鲁棒性.本文应用项目调度标准问题 库PSPLIB中大量问题实例进行了仿真实验,同两个当前具有代表性的鲁棒性项目调度算法进行了比较,实验结果表明了文中算法的有 效性与优势. 相似文献