首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
系统地研究了粉末聚酯(PET)固相缩聚,得到了有效的干燥结晶条件:140℃干燥120 min,180℃再结晶45 min,切片含水率低于30μg/g;研究了反应温度,粉末粒径和N2流量对PET固相缩聚的影响,分析粉末固相缩聚存在N2流量阈值的机理。结果表明:反应温度越高,颗粒越小,固相缩聚反应速度越快;粉末 PET预聚体在一定温度下固相缩聚,存在N2流量阈值。在此流量下,达到该温度下的该粒径粉末的最大界面扩散速率和固相缩聚的最大反应速度。相同反应温度下,粉末粒径越小,阈值N2流量越大。  相似文献   

2.
以聚己内酰胺(PA 6)为皮层、聚对苯二甲酸乙二醇酯(PET)为芯层,PA 6与PET切片质量比(复合比)为50:50,通过复合纺丝生产2.85 dtex皮芯型PA 6/PET复合短纤维,探讨了复合纺丝和后加工的工艺条件对生产及产品质量的影响。结果表明:PET切片在预结晶温度165℃、主干燥温度160℃、干燥时间4 h的条件下进行干燥后,其含水率为30μg/g;控制PA 6熔体温度270℃,PET熔体温度280℃,环吹风温度21℃、速度0.35 m/s、相对湿度70%,油浴温度60~70℃,蒸汽箱温度123~128℃,热定型温度130℃,热定型时间25 min,复合短纤维生产稳定且产品质量好,纤维截面皮芯结构均匀,纤维断裂强度为3.77 cN/dtex,断裂伸长率为64.4%,含油率为0.68%,电阻率为1.9×10~7Ω·cm。  相似文献   

3.
以乙二醇(EG)为解聚剂分别醇解特性黏数为0.670,1.014 dL/g的聚对苯二甲酸乙二醇酯(PET)切片及两者的混合物,对醇解产物进行了表征;通过单因素控制法考察了反应温度、EG与PET摩尔比、反应时间、催化剂添加量对醇解产物产率的影响;针对高黏度PET切片难以醇解的问题,提出了一种溶胀预处理工艺,研究了溶胀预处理PET切片的醇解动力学。结果表明:不同黏度PET切片的醇解产物的化学结构基本一致,主产物均为对苯二甲酸双羟乙酯(BHET);高黏度PET切片醇解体系的反应温度高于低黏度PET切片,高黏度PET切片适宜的醇解工艺为EG与PET摩尔比14:1、催化剂添加质量分数0.5%、反应时间240 min、反应温度200℃,此条件下产物BHET的产率为48.65%;高黏度PET切片在130℃经溶胀预处理后,结晶度由30.95%降至25.25%,反应速率常数由0.131 9 min-1提高至0.171 9 min-1,醇解速率大幅提高,溶胀预处理适宜的温度为高于PET切片的玻璃化转变温度且比其结晶温度低20~30℃。  相似文献   

4.
采用含有吸湿基团及功能性无机粉体的多功能共聚酯切片与常规聚酯(PET)切片共混,生产具有吸湿速干、抗静电、抗起球、抗紫外等三叶形复合功能PET短纤维,对其纺丝工艺进行探讨。结果表明:采用Y形喷丝孔,于喷丝板的内圈至外圈呈等差交错向心排布;多功能共聚酯切片共混前,先用转鼓在130℃下预结晶11~13 h,与常规PET切片按质量比2∶8共混,共混后切片干燥采用流化床与充填干燥塔结合的方式,干燥温度155~160℃,干燥时间4~5 h,共混切片含水率小于30μg/g;组件初始压力为9.5-11.5 MPa,纺丝温度285~287℃,环吹风温度21~23℃,速度0.95~1.05 m/s,油浴拉伸占总拉伸倍数的86%~88%,拉伸温度58~62℃;生产1.33 dtex三叶形复合功能PET短纤维的断裂强度为5.63 c N/dtex,断裂伸长率为15.7%,其织物抗起球性能为4~5级,最大吸水率为294%。  相似文献   

5.
以废旧聚酯(PET)纺织品为原料还原成高品质的再生对苯二甲酸二甲酯(DMT),然后再生DMT与乙二醇(EG)进行酯交换反应生成单体二羟乙基对苯二甲酸乙二醇酯(BHET),再经聚合反应制备了再生PET切片,探讨了酯交换反应以及聚合反应条件。结果表明:在酯交换反应过程中,经过多段升温和柱顶回流比(RPC)控制,反应温度从初期的150℃最终上升至260℃,通过RPC控制柱顶温度在64~99℃,可防止DMT沸腾,控制BHET产率在99%以上;聚合反应温度应控制在300℃以下,反应时间为120~130 min;制备的再生半消光PET切片特性黏数为(0.63±0.01)d L/g,二甘醇质量分数为(0.67±0.01)%,二氧化钛质量分数为(0.3±0.02)%,达到GB/T 14189—2015纤维级PET切片质量要求。  相似文献   

6.
用VC403纺丝机纺制题示纤维。对设备及工艺进行了改进:在切片干燥前加入0.01%的硬酯酸钙,以增加切片的润滑性能;干燥升温阶段放慢升温速率,冷却阶段通入减湿空气。在切片含水率≤0.006%的情况下,纺丝温度应控制比同规格半消光PET高8—12℃;吹风温度为40—50℃,吹风速度0.2—0.3m/s;加强喷丝板保温;改进吹风窗结构及设计水字形喷丝孔形。  相似文献   

7.
以碱溶性聚酯(COPET)切片及PA6切片为原料,共轭纺丝生产线密度为3.5-4.4 dtex海岛复合超细短纤维,对生产过程中的关键工艺进行了探讨。得出最佳工艺条件为:COPET预结晶温度为100-165℃,结晶时间18-23 min,干燥温度低于165℃,干燥时间小于8 h,COPET/PA6为30/70,纺丝箱体温度272-285℃,纺丝速度800-1000 m/min,定型温度为115-130℃。生产出的复合超细短纤维能够满足后加工的要求。  相似文献   

8.
利用PP-BCF设备研制生产PBT-BCF,要求PBT切片[η]为0.9dL/g,干燥后含水≤2.5‰;PBT-BCF生产中纺丝温度控制在低于PET纺丝温度10—15℃;可用PP色母粒原液着色生产有色丝;纺丝油剂可用PET长丝油剂;并对产品的性能和用途作了简要介绍。  相似文献   

9.
十四烷辅助下聚酯的固相缩聚   总被引:2,自引:0,他引:2  
在200~240℃研究了聚对苯二甲酸乙二醇酯(PET)在十四烷辅助下的固相缩聚反应.结果表明,溶剂辅助下的固相缩聚(分散相固相缩聚)的反应速度较传统气相环境中的固相缩聚更快,最佳反应温度为230℃左右.随着反应温度的升高,分散相固相缩聚得到的PET切片的熔点和结晶度也相应提高.分散相固相缩聚前后PET切片的孔隙率并未发生明显变化.用苯酚处理之后的PET孔隙率增加,有利于小分子扩散,使缩聚反应速率加快.聚合物在十四烷中溶胀导致链活动性增强可能是分散相固相缩聚分子量提高的主要原因.  相似文献   

10.
通过高温高压醇解法对废聚对苯二甲酸乙二醇酯(PET)在催化剂金属醋酸盐作用下,进行乙二醇醇解得到对苯二甲酸乙二醇酯(BHET),研究了废PET高温醇解的影响因素及工艺条件。结果表明:在高温醇解反应中,乙二醇与废PET的质量比和反应压力为主要影响因素,反应温度和解聚时间为次要影响因素;BHET收率随反应时间的延长、温度与压力的升高、乙二醇与废PET的质量比加大、催化剂的用量增大而增加,而二甘醇含量(除质量比因素)及醇解产物的熔点则随其相应降低;最佳醇解反应条件为压力0.4 MPa、乙二醇与废PET质量比0.5∶1.0、反应温度250℃、反应时间4 h,BHET收率达82%。  相似文献   

11.
Molecular weight is an important factor in the processing of polymer materials, and it should be well controlled to obtain desired physical properties in final products for end‐use applications. Degradation processes of all kinds, including hydrolytic, thermal, and oxidative degradations, cause chain scission in macromolecules and a reduction in molecular weight. The main purpose of this research is to illustrate the importance of degradation in the drying of poly(ethylene terephthalate) (PET) before processing and the loss of weight and mechanical properties in textile materials during washing. Several techniques were used to investigate the hydrolytic degradation of PET and its effect on changes in molecular weight. Hydrolytic conditions were used to expose fiber‐grade PET chips in water at 85°C for different periods of time. Solution viscometry and end‐group analysis were used as the main methods for determining the extent of degradation. The experimental results show that PET is susceptible to hydrolysis. Also, we that as the time of retention in hydrolytic condition increased, the molecular weight decreases, but the rate of chain cleavage decreased to some extent, at which point there was no more sensible degradation. The obtained moisture content data confirmed the end‐group analysis and viscometry results. Predictive analytical relationships for the estimation of the extent of degradation based on solution viscosity and end‐group analysis are presented. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2304–2309, 2007  相似文献   

12.
固相缩聚反应温度与时间对PET结晶的影响   总被引:1,自引:0,他引:1  
研究了聚对苯二甲酸乙二醇酯(PET)切片在固相缩聚反应中特性粘数和结晶度随反应条件的变化及其热行为。结果表明:固相缩聚PET特性粘数随反应温度和反应时间不断增大,反应温度为215~ 225℃时较佳,随反应的进行新结晶产生,一定时间后结晶度增加缓慢并趋于平衡;DSC分析表明固相缩聚反应后的PET存在一个特征熔融峰(253℃左右)和固相缩聚峰,随着反应温度和反应时间的增加,固相缩聚峰不断向特征熔融峰靠拢,一定反应温度和反应时间后融合为单峰,之后低温峰跨过特征熔融峰向高温移动。  相似文献   

13.
This article covers the depolymerization of poly(ethylene terephthalate) (PET) under microwave irradiation in neutral water. The reaction was carried out in a sealed reaction vessel in which the pressure (or temperature) was controlled. The hydrolytic product contained terephthalic acid, ethylene glycol, and diethylene glycol characterized by IR spectrometry and gas chromatography. The undepolymerized PET was identified by gel permeation chromatography. Both the yield of terephthalic acid and the degree of PET depolymerization were seriously influenced by pressure (or temperature), the weight ratio of water to PET, and the reaction time. The applied irradiation power had little influence on the degree of PET depolymerization. With a pressure of 20 bar (temperature = 220°C), a reaction time of 90–120 min, and a weight ratio of water to PET of 10:1, the PET resin was depolymerized completely. The molecular weight and the molecular weight distribution indicated that the hydrolytic depolymerization of PET obeyed the regular chain‐scission mechanism to some extent. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 719–723, 2005  相似文献   

14.
采用切片纺丝路线,探讨采用不同特性黏数([η])的聚对苯二甲酸乙二醇酯(PET)切片制备超高强涤纶短纤维的可行性;并选用[η]较高的PET切片在切片纺工业化涤纶短纤维装置上通过纺丝温度、拉伸倍数、拉伸温度和热定型温度等工艺参数的调整优化,试生产超高强涤纶短纤维。结果表明:采用[η]较高的PET切片,选择合适的纺丝和后加工条件可以生产超高强涤纶短纤维;选择[η]为0.731 dL/g的PET切片为原料,在7500 t/a切片纺涤纶短纤维装置常规生产工艺基础上,调整纺丝螺杆温度为290~295℃、箱体温度为296~300℃,初生纤维断面不匀率小于等于1.21%,纺丝状况良好;调整水浴拉伸温度为70℃、总拉伸倍数为3.878、热定型温度为185℃,试生产的涤纶短纤维结晶度和非晶区取向有所增大,断裂强度达7.02 cN/dtex,达到了超高强纤维的要求。  相似文献   

15.
陈克权 《合成纤维》1989,18(5):50-53
本文通过测定干燥后PET切片的特性粘度及所纺成纤维的强伸度,研究了直接酯化法生产的PET切片在连续式充填干燥器中干燥过程中所发生的固相缩聚。研究结果表明干燥温度和干燥时间对固化反应的速度和程度都有很大影响,固相缩聚后的干切片粘度和分子量有所提高,并将导致熔体温度和POY强度提高。干燥温度和时间的波动会导致干切片特性粘度的不均,并进一步导致纤维的不匀率提高。  相似文献   

16.
固相缩聚对PET切片结晶度及粘度的影响   总被引:3,自引:1,他引:3  
研究了PET连续式固相缩聚反应中升温速度、反应温度和反应时间对切片预结晶度及特性粘数的影响。切片预结晶度随升温速度的增大而逐步降低 ,特性粘数随反应时间的延长或反应温度的升高而增大。实际生产中 ,较佳的反应温度 2 10~ 2 3 0℃ ,升温速度小于 3 0℃ /min ,反应时间 2 3h。  相似文献   

17.
异佛尔酮二异氰酸酯扩链合成聚丁二酸丁二醇酯的研究   总被引:1,自引:1,他引:0  
以异佛尔酮二异氰酸酯(IPDI为)扩链剂对低分子量的聚丁二酸丁二醇(酯PBS进)行扩链,研究了扩链剂用量、反应时间、反应温度对PBS分子量的影响,并探讨了扩链反应的机理。结果表明:合成PBS的最佳条件是IPDI用量1.0%,反应温度140℃,常压反应60min;扩链反应时,IPDI的异氰酸酯基团与PBS分子链端的羟基反应生成氨基甲酸酯,将PBS预聚体进行偶联处理,从而使PBS的分子量显著提高。  相似文献   

18.
用粘度降法和热重分析法研究了含5wt%、10wt%和15wt%的聚合物型阻燃剂SF-FR的PET在纺丝温度条件下的热氧化降解行为。研究表明,在一定的降解时间内,降解反应可用一级反应动力学描述,但基于特性粘度变化和失重变化得到的降解反应速率常数K_[η]和K_G随阻燃剂含量的变化有着不同的变化趋势。在一定的条件下,阻燃剂的加入会降低K_G,但是K_[η]则随阻燃剂含量的增加而增大。  相似文献   

19.
The aminolytic depolymerization of poly(ethylene terephthalate) (PET) taken from waste soft‐drink bottles, under microwave irradiation, is proposed as a recycling method with possible substantial energy savings. The reaction was carried out with ethanolamine and without the use of any other catalyst in a sealed microwave reactor in which the pressure and temperature were controlled and recorded. Experiments under constant temperature or microwave power were carried out for several time periods. The main product, bis(2‐hydroxyethyl) terephthalamide, was identified from Fourier transform infrared (FTIR) spectra and DSC measurements. It was found that PET depolymerization is favoured by increasing temperature, time and microwave power. The average molecular weight of the PET residues, determined using viscosity measurements, was found to decrease with the percentage of PET degradation, indicating a random chain scission mechanism to some extent. From a simple kinetic model, the activation energy of the reaction was evaluated. Complete depolymerization was found to occur in less than 5 min when the irradiation power applied was 100 W or the temperature was 260 °C. These results support the use of microwave‐assisted aminolytic degradation as a very beneficial method for the recycling of PET wastes. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号