首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The electrodiffusion technique was performed in order to investigate the shear rate on a scraped surface heat exchanger. Microelectrodes were placed inside: the walls of the outer cylinder; the inlet and outlet bowls; the rotor and the blades. Highly viscous Newtonian fluid (Emkarox HV45 solutions) and non-Newtonian model fluid (aqueous solutions of CMC) were used. The electrodiffusion method allowed us to measure wall shear rates. Maximum shear rate was observed at the scraping surface and caused by blades scraping, high shear rate was also measured on the leading edge of the blades. In the other parts of the exchanger, shear rate remained low but the development of Taylor vortices completely modified the scraped surface heat exchangers behaviour inside the surface of the bowls. A dimensionless representation of the friction factor was established for the inner and outer wall surface of the exchanger.  相似文献   

2.
In the present study a virtual prototype of a four-channel plate heat exchanger with flat plates was developed using computational fluid dynamics (CFD). Parallel and series flow arrangements were tested and experimental results were compared to numerical predictions for heat load obtained from the 3D CFD model and also from a 1D plug-flow model. The CFD model represents channels, plates and conduits of the exchanger and takes into account the unequal flow distribution among channels and the flow maldistribution inside the channel. CFD results are in good agreement with experimental data, especially for the series arrangement.  相似文献   

3.
Turbulent fluid flow and related solid particle behaviour in the direct vicinity of the heat exchanging (HE) surface of a scraped heat exchanger crystallizer was studied. The liquid flow is visualized by dye injection and the particles are monitored directly for two types of commonly used scraper geometries. In conjunction with this experimental work, we performed direct numerical simulations of the two-phase (solid-liquid) flow system. Our main goal is the design of scraper geometries that enhance heat transfer by perturbing the thermal boundary layer, and effectively scrape off particles that nucleate, grow and adhere onto the HE surface. Also the turbulent flow generated by the moving scrapers should direct the particles into the bulk of the tank. The experiments and simulations show good qualitative resemblance which enables the design of scrapers based primarily on numerical predictions.  相似文献   

4.
The transport phenomena in scraped heat exchanger (HE) crystallizers are critical for the process performance. Fluid flow and turbulence close to the HE surface as generated by stirring elements and scraper blades are crucial in this respect as they aim at avoiding an insulating scale layer on the HE surface. For this reason we performed large-eddy simulations of the turbulent flow (at a Reynolds number of 5×104) in a typical cooling crystallizer geometry with a focus on the bottom region where the heat exchanging surface was located. The flow simulations were validated with stereoscopic PIV experiments performed higher up in the crystallizer. Water at a constant temperature was the working fluid in the experiments as well as in the simulations. For reasons of optical accessibility being hindered by the scrapers, the experiments could not be done near the heat exchanging surface. The flow structures as revealed by the large-eddy simulations could explain the local occurrence of scaling on an evenly cooled HE surface, and its irreproducibility caused by instantaneous cold spots.  相似文献   

5.
以与温度相关的指数定律作为本构方程,应用无网格方法模拟了外表面为恒温时的圆管内具有黏性耗散的聚合物流动热传导问题,给出了离入口不同位置处的温度分布。计算结果表明:根据黏性耗散模型计算的温度比无黏性耗散模型高出64℃,从而说明了黏性耗散在聚合物流动热传导问题中具有举足轻重的作用。并且, 无论是无黏性耗散模型,还是黏性耗散模型,其极限温度与壁面温度有很大的关系,但与入口温度无关。  相似文献   

6.
In the present work attempts were made to investigate the hydrodynamics and heat transfer characteristics of tube-in-tube helical heat exchanger at the pilot plant scale. The experiments were carried out in counter current mode operation with hot fluid in the tube side and cold fluid in the annulus area. The outer tube was fitted with semicircular plates to support the inner tube and also to provide high turbulence in the annulus region. Overall heat transfer coefficients were calculated and heat transfer coefficients in the inner and outer tube were determined using Wilson plots. A commercial Computational Fluid Dynamics package [FLUENT User's Guide, release 6.0, Fluent Inc., Lebnon, NH, 1994] was used to predict the flow and thermal development in tube-in-tube helical heat exchanger. The Nusselt number and friction factor values in the inner and outer tubes were compared with the experimental data collected in the present study as well as reported in the literature. The CFD simulations were in agreement with the present experimental data. In case of literature data a reasonable comparison was found even though the boundary conditions in the present work were different.  相似文献   

7.
Plate fin-and-tube heat exchangers operate in a cross-flow arrangement with the complex path of gas flow, hence in order to determine the velocity field and heat transfer characteristics, the numerical methods must be used. The CFD codes allow obtaining local values of the heat transfer coefficient, however it is impossible to incorporate these values into the analytical formulas for the overall heat transfer coefficient, that is fundamental for the designing procedure of the cross-flow heat exchangers. Therefore this paper presents a method for determination of the average heat transfer coefficient for gas flow in a plate fin-and-tube heat exchanger using the CFD simulations. The values of the heat transfer coefficient obtained using the heat transfer formulas for the Nusselt number, determined with the CFD simulations, can be directly implemented in the thermal designing procedure of the cross-flow heat exchangers. The results of the numerical computations are validated experimentally.  相似文献   

8.
陆威  苗冉  吴志根  吴长春  谢伟 《化工学报》1951,73(7):2924-2932
针对非牛顿流体在波节套管换热器管程的流动与换热进行了实验研究。重点研究了0.2%黄原胶溶液(XG)在不同波节套管换热器管程流动时的传热与阻力特性,并分析了强化传热机理。结果表明在相同工况下,随着管程黄原胶溶液Reynolds数ReXG的增大,套管换热器总传热系数k和管程进出口压降Δp逐渐增大;波高H和波距S影响黄原胶溶液在套管换热器管程的流动与换热。随波高H增大,黄原胶溶液受波节处的涡旋效应的影响更明显,流体层间剪切力变大导致黄原胶溶液黏度变小,湍流程度更大,管程传热性能提高,压降也增大,但综合传热性能不断优化;随波距S增大,单位长度波节数量减少,对黄原胶溶液扰动影响降低,湍流程度降低,管程传热系数先增大后减小,流动阻力不断降低,综合传热性能先提高后减弱。当H=3.5 mm、S=30 mm时管程波节管的综合换热因子ηtube达到最大,ηtube是相同条件下圆管的5.11~6.69倍。  相似文献   

9.
陆威  苗冉  吴志根  吴长春  谢伟 《化工学报》2022,73(7):2924-2932
针对非牛顿流体在波节套管换热器管程的流动与换热进行了实验研究。重点研究了0.2%黄原胶溶液(XG)在不同波节套管换热器管程流动时的传热与阻力特性,并分析了强化传热机理。结果表明在相同工况下,随着管程黄原胶溶液Reynolds数ReXG的增大,套管换热器总传热系数k和管程进出口压降Δp逐渐增大;波高H和波距S影响黄原胶溶液在套管换热器管程的流动与换热。随波高H增大,黄原胶溶液受波节处的涡旋效应的影响更明显,流体层间剪切力变大导致黄原胶溶液黏度变小,湍流程度更大,管程传热性能提高,压降也增大,但综合传热性能不断优化;随波距S增大,单位长度波节数量减少,对黄原胶溶液扰动影响降低,湍流程度降低,管程传热系数先增大后减小,流动阻力不断降低,综合传热性能先提高后减弱。当H=3.5 mm、S=30 mm时管程波节管的综合换热因子ηtube达到最大,ηtube是相同条件下圆管的5.11~6.69倍。  相似文献   

10.
Continuous hydrothermal flow synthesis processes are of interest for the manufacture of nanoparticle metal oxides. In such processes, nanoparticle nuclei (in a slurry) which are initially formed, may continue to grow and agglomerate to generate larger particles as they pass through the synthesis apparatus. These processes can widen the size distribution and also affect the ultimate particle shape in the recovered product. Therefore, fast cooling or quenching the initial nanoparticle slurry using a highly efficient heat exchanger may minimise or stop further crystallisation/agglomeration processes. This may be achieved by optimising the design of the heat exchanger based on detailed examination of flow patterns and heat transfer profiles using a computational fluid dynamics (CFD) modelling approach. The predicted flow and heat transfer patterns in the heat exchanger can also provide detailed information for the identification of any heat transfer deterioration or hot spots where further reactions may occur. This paper employs a CFD modelling approach to simulate the heat transfer processes in a tubular heat exchanger of a continuous hydrothermal flow synthesis system and also to examine the effect of various operating conditions, including inlet temperature and flowrate of hot slurry and inlet flowrate of cooling water, on the fluid and thermal features in the heat exchanger. The simulated results show that the predicted temperature and heat transfer coefficient are in good agreement with experimental measurements.  相似文献   

11.
An experimental investigation of a scaled-down model of an industrial exchanger, using an electrochemical technique, was undertaken in order to show the presence of hydrodynamic heterogeneities at low axial Reynolds number. Heterogeneities were revealed in the bowls with respect to the generalised Taylor number as the result of the perturbations added to the flow by blade rotation at both ends of the exchanger. Shear heterogeneities associated to flow visualisations were correlated to temperature heterogeneities observed in the bowls. Shear fluctuations were revealed in the scraped part describing two distinctive zones at low rotation speed caused by varying viscosity in the flow field. A complex spiral flow was observed by flow visualisation characterising a mass transfer evolution comprised between these two distinctive zones at low Taylor number.  相似文献   

12.
张灿灿  王定标  韩勇  夏春杰 《化工学报》2016,67(Z1):111-116
板式换热器在工业生产中广泛应用。基于换热器(火积)耗散热阻理论,采用数值模拟和实验相结合的方法对新型蜂窝板式换热器进行研究。结果表明数值模拟和实验结果在合理的误差范围内,验证了数值模拟的可靠性。新型板式换热器内部蜂窝结构附近的速度场出现规律的周期性变化,流体湍流强度增加,提高了换热效率。新型板式换热器换热量与其(火积)耗散和(火积)耗散热阻呈反比例关系,这为新型蜂窝板式换热器的优化提供了理论依据,并为工业生产提供参考。  相似文献   

13.
螺旋扭曲扁管换热器传热与流阻性能试验研究   总被引:10,自引:0,他引:10  
张杏祥  魏国红  桑芝富 《化学工程》2007,35(2):17-20,25
对4种不同结构的螺旋扭曲扁管换热器的管程和壳程传热与流阻性能进行了试验研究,并和采用圆管作为换热管的弓形折流板换热器进行了比较,根据试验数据回归出反映螺旋扭曲扁管换热器管程和壳程传热与流阻特性的关联式。研究结果表明,螺旋扭曲扁管换热器管程与壳程都有较好的强化传热性能,螺旋扭曲扁管的几何尺寸和流体Re对其管、壳程传热与流阻性能有重要影响。  相似文献   

14.
Experimental studies on isothermal steady state and non-isothermal unsteady state conditions were carried out in helical coils for Newtonian as well as for non-Newtonian fluids. Water and glycerol–water mixture (10 and 20% glycerol) were used as Newtonian, and 0.5–1% (w/w) dilute aqueous polymer solutions of Sodium Carboxy Methyl Cellulose (SCMC) and Sodium Alginate (SA) as non-Newtonian fluids are used in this study. These experiments were performed for coil curvature ratios as δ = 0.0757, 0.064 and 0.055 in laminar and turbulent flow regimes (total 258 tests). The CFD analyses for laminar and turbulent flow were carried out using FLUENT 12.0.16 solver of CFD package. The CFD calculation results (Nui, U, T2 and Two) for laminar and turbulent flow are compared with the experimental results and the work of earlier investigators which were found to be in good agreement. For the first time, an innovative approach of correlating Nusselt number to dimensionless number, ‘M’, Prandtl number and coil curvature ratio using least-squares power law fit is presented in this paper which is not available in the literature. Several other correlations for calculation of Nusselt number for Newtonian and non-Newtonian fluids, and two correlations for friction factor in non-Newtonian fluids (based on 78 tests and 138 tests) are proposed. These developed correlations were compared with the work of earlier investigators and are found to be in good agreement.  相似文献   

15.
管壳式换热器作为工程中应用广泛的换热器,具有结构坚固、适应性强、能够利用和回收热能等优点。在追求高能源利用效率的背景下,换热器的强化传热得到广泛关注。本文重点阐述了管壳式换热器的强化传热相关研究进展,包括换热器本身几何结构的优化、换热流体的热物性改善以及多种强化传热技术结合的复合强化传热方法。其中几何结构优化主要包括改变换热管管型、增加管内插入物以及壳程中的隔板优化研究等。换热流体热物性改善包括纳米流体提高热导率、潜热型热流体提高比热容等。复合强化传热是将多种强化方法结合,可弥补单一方法的不足,以获得更高强化传热效果。最后指出管壳式换热器强化传热未来的研究方向在于持续开发强化传热管、制备稳定的纳米流体及潜热型流体以及多种强化方式复合提高强化效果。  相似文献   

16.
Heat transfer in the presence of a low-frequency ultrasonic field has been investigated. Experiments were performed using a home-made shell-and-tube heat exchanger. The aim of this study was to investigate the effect of ultrasound on heat exchange performed by this new type of “vibrating” heat exchanger named sonoexchanger. Comparison was then made between overall heat transfer coefficients with and without ultrasound for the same hydrodynamic configurations. It was shown that under ultrasonic conditions, the overall heat transfer coefficient can be increased from 123 to 257%.  相似文献   

17.
设计了一种新型插入扰流元件管式换热器,并依据相关文献的模拟数据将其与波纹管、光管在不同流速下的管内壁面平均传热系数、换热量、平均Nusselt数以及摩擦阻力的变化特性进行了分析比较。结果表明:插入扰流元件换热管在强化换热能力的同时其压力损失也会很大,所以在实际应用过程中选取插入扰流元件换热管时一定要考虑其经济性;在泵功率消耗一定时,插入扰流元件换热管的热效率与波纹管的热效率很接近。但插入扰流元件换热管在制造工艺上具有加工方便、固定灵活等优点,比较适合对现有换热器的改造。所以,该种热管同样具有广泛的应用价值。  相似文献   

18.
王茜  韩怀志  李炳熙 《化工学报》2017,68(Z1):71-82
采用Realizable k-ε湍流模型,针对一种人字形板间波纹通道的流动与传热机理进行了数值模拟研究。考察了不同Reynolds数湍流状态下波纹通道中沿壁面的平均以及局部表面特征数(Nu和f)的变化规律,揭示了流动与传热参数在波纹通道不同横向剖面的分布规律。结果表明在Re<7860时,凹壁面Nu更大;Re>7860时,凸壁面Nu更大;随着Re的增大凹壁面f大于凸壁面。凹壁面的Nu在近入口和近出口处存在两个峰值,并且在近出口处存在极大值;而凸壁面在近入口处存在一个极大值,在近出口处存在极小值。凹壁面的f在近出口处出现陡升现象,而凸壁面则在近入口处出现陡升。随着Re增大,剖线v和TKE增大,而T减小。另外,v、T和TKE在近凹壁面区域皆突然增大。  相似文献   

19.
论述了前人对流化床与浸没换热管间传热规律的理解和认识,介绍了常用的传热模型及其实用条件,总结了近年来在实验研究等方面所取得的进展。  相似文献   

20.
简要介绍了板棒式换热器的结构和工作原理,设计制造了板棒式换热器,对板棒式换热器进行了传热与流阻实验。实验结果表明总传热系数理论计算与实验结果吻合较好,验证了模型公式的正确性。板棒式换热器是一种性能优良、结构紧凑的高效换热器,在硫酸工业等气体换热场合将有广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号