首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Domes are elegant and economical structures used in covering large areas. They are built in various forms. According to their form, they are given special names such as lamella, network, and geodesic domes. In this paper, optimum topological design algorithm is presented that determines the optimum number of rings, the optimum height of crown and tubular section designations for the member groups of these domes. The design algorithm developed has a routine that generates the data required for the geometry of these domes automatically. The minimum weight of each dome is taken as the objective function. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design–American Institute of Steel Constitution). The optimum topological design problem that considers these constraints turns out to be discrete programming problem. Improved harmony search algorithm is suggested to determine its optimum solution. The design algorithm also considers the geometric nonlinearity of these dome structures. Design examples are presented to demonstrate the effectiveness and robustness of the design optimization algorithm developed.  相似文献   

2.
In this study a genetic algorithm based method is developed for the optimum design of grillage systems. The algorithm not only selects the optimum sections for the grillage elements from a set of standard universal beam sections, but also finds the optimum spacing required for the grillage system. Deflection limitations and allowable stress constraints are considered in the formulation of the design problem. Due to the fact that grillage elements are thin walled sections, warping plays an important role in their design, particularly, when they are subjected to significant torsional loading. The algorithm developed has the flexibility of including or excluding the effect of warping in the design process. Grillage structures are designed for uniformly distributed loading. The optimum spacings are determined both considering and not taking into account the effect of warping in the design. The comparison of the results shows that inclusion of warping in the design process has a significant effect on the optimum spacing.  相似文献   

3.

Metaheuristic algorithms have provided an efficient tool for designers by which discrete optimum design of real-size steel space frames under design code requirements can be obtained. In this study, the optimum sizing design of steel space frames is formulated according to provisions of Load and Resistance Factor Design—American Institute of Steel Construction. The weight of the steel frame is taken as objective function. The design algorithm selects the appropriate W sections for members of the steel frame such that the frame weight is the minimum and design code limitations are satisfied. The biogeography-based optimization algorithm is utilized to find out the optimum solution of the discrete programming problem. This algorithm is one of the recent additions to metaheuristic techniques which are based on theory of island biogeography where each habitat is assumed to be potential solution for the design problem. The performance of the biogeography-based optimization algorithm is compared with other recent metaheuristic algorithms such as adaptive firefly algorithm, teaching and learning-based optimization, artificial bee colony optimization, dynamic harmony search algorithm, and ant colony algorithm. It is shown that biogeography-based optimization algorithm outperforms other metaheuristic techniques in the design examples considered.

  相似文献   

4.
The objective of this paper is to develop an integrated approach using artificial neural networks (ANN) and genetic algorithms (GA) for cost optimization of bridge deck configurations. In the present work, ANN is used to predict the structural design responses which are used further in evaluation of fitness and constraint violation in GA process. A multilayer back-propagation neural network is trained with the results obtained using grillage analysis program for different bridge deck configurations and the correlation between sectional parameters and design responses has been established. Subsequently, GA is employed for arriving at optimum configuration of the bridge deck system by minimizing the total cost. By integrating ANN with GA, the computational time required for obtaining optimal solution could be reduced substantially. The efficacy of this approach is demonstrated by carrying out studies on cost optimization of T-girder bridge deck system for different spans. The method presented in this paper, would greatly reduce the computational effort required to find the optimum solution and guarantees bridge engineers to arrive at the near-optimal solution that could not be easily obtained using general modeling programs or by trial-and-error.  相似文献   

5.

In this paper, an optimization process using MATLAB-SAP2000 Open Application Programming Interface (OAPI) is presented for optimum design of space frames with semi-rigid connections. A specified list including W-profiles taken from American Institute of Steel Construction (AISC) is used in the selection of suitable sections. The stress constraints as indicated in load and resistance factor design of AISC, lateral displacement constraints being the top- and inter-storey drift and geometric constraints are considered in the optimization process. Genetic algorithm method based on biological principles and harmony search algorithm method based on the processes of musical harmony are used for optimum designs. Two different space frames are solved for the cases of rigid and semi-rigid connections, separately. A computer program is coded in MATLAB for the purpose interacting with SAP2000 OAPI. Results obtained from the analyses show that type of semi-rigid connections plays a crucial role in the optimization of steel space frames and increases the optimum weight.

  相似文献   

6.
This paper presents a model for the optimum design of ship transverse frames. An elastic-plastic finite element analysis algorithm for plane frames has been incorporated in the model to evaluate the ultimate strength of the overall frame, and different effects of design loads. Using these strengths and load effects, appropriate design constraints are then formulated to prevent different failure categories; the overall collapse, ultimate limit state failures and serviceability failures. Possible instabilities and effects of combined loads are accounted for in formulating these constraints. Scantlings of the frame structure have been modelled as free design variables. The weight function and different constraint functions are then derived relating design variables in such a way that once parameters for finite element analysis are input, the scheme automatically forms the objective function and all constraints, and then interacts with the simplex algorithm through sequential linearization to find the optimum solution. Thus the scheme is almost automatic. Different layouts of the frame structure have been designed by executing this scheme, which demonstrates the capability of the model and the possibility of weight savings by choosing the appropriate layout. Finally, it is suggested how this model would interact with the design of longitudinal materials to ensure the overall optimality in ship hull module design, to prevent grillage buckling and to validate underlying assumptions in analysis.  相似文献   

7.
Various computer methods have been developed for the optimal design of indeterminate structures, but it is not possible to guarantee that the result of any method will be a global optimum, rather than merely a local optimum. By temporarily neglecting the conditions of elastic compatibility and formulating a mathematical optimization problem based on the equilibrium conditions and the stress constraints, it is possible to obtain an approximate design which avoids merely local optima. In the cases examined, this design is close to the exact global optimum obtained by enforcing the compatibility conditions and is therefore a good starting point for an optimizing procedure. Examples include a graphical solution of a simple grillage known to have multiple local optima, and a sequence of planar trusses under alternate loading conditions. Linear programming is used to find the minimum weight truss designs satisfying equilibrium; this method eliminates extraneous members and leads to better indeterminate truss configurations than does a stress-ratio type algorithm.  相似文献   

8.
Most engineering optimization algorithms are based on numerical linear and nonlinear programming methods that require substantial gradient information and usually seek to improve the solution in the neighborhood of a starting point. These algorithms, however, reveal a limited approach to complicated real-world optimization problems. If there is more than one local optimum in the problem, the result may depend on the selection of an initial point, and the obtained optimal solution may not necessarily be the global optimum. This paper describes a new harmony search (HS) meta-heuristic algorithm-based approach for engineering optimization problems with continuous design variables. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. Various engineering optimization problems, including mathematical function minimization and structural engineering optimization problems, are presented to demonstrate the effectiveness and robustness of the HS algorithm. The results indicate that the proposed approach is a powerful search and optimization technique that may yield better solutions to engineering problems than those obtained using current algorithms.  相似文献   

9.
A computational method is presented for finding a sequence of optimum designs of a discrete system which exhibits limit point behaviour. Optimality conditions are derived in terms of the theory of imperfection sensitivity coefficients for the limit point load factor. Only those designs of the structures which exhibit limit point behaviour are considered as feasible designs, and the design change is conceived as generating a kind of imperfection. The efficiency of the proposed algorithm will be appreciated particularly for large structures, because incremental nonlinear analysis to find the limit point load factor needs to be carried out only once for the structure of trivial initial optimum design. The sequence of optimum designs is described by piecewise Taylor series expansions with respect to the specified limit point load factor. It is shown in the examples that the proposed method is efficient and of good accuracy for a large space truss.  相似文献   

10.
This paper presents the hybrid harmony search algorithm with swarm intelligence (HHS) to solve the dynamic economic load dispatch problem. Harmony Search (HS) is a recently developed derivative-free, meta-heuristic optimization algorithm, which draws inspiration from the musical process of searching for a perfect state of harmony. This work is an attempt to hybridize the HS algorithm with the powerful population based algorithm PSO for a better convergence of the proposed algorithm. The main aim of dynamic economic load dispatch problem is to find out the optimal generation schedule of the generators corresponding to the most economical operating point of the system over the considered timing horizon. The proposed algorithm also takes care of different constraints like power balance, ramp rate limits and generation limits by using penalty function method. Simulations were performed over various standard test systems with 5 units, 10 units and 30 units and a comparative study is carried out with other recently reported results. The findings affirmed the robustness and proficiency of the proposed methodology over other existing techniques.  相似文献   

11.
为了更好地提高求解高维复杂优化问题的能力,提出一种动态自适应和声搜索(DSHS)算法。该算法采用正交试验来设计算法的初始化和声记忆库;利用多维动态自适应调整算子和单维和声微调算子相结合的策略进行和声创作;改进和声音调调解步长,从而增强算法的扰动能力,避免其陷入局部搜索。通过6个标准Benchmark函数测试表明,该算法在全局搜索能力、收敛速度和稳定性方面都有明显提高。  相似文献   

12.
Optimum design of steel frames using harmony search algorithm   总被引:1,自引:0,他引:1  
In this article, harmony search algorithm was developed for optimum design of steel frames. Harmony search is a meta-heuristic search method that has been developed recently. It bases on the analogy between the performance process of natural music and searching for solutions to optimization problems. The objective of the design algorithm is to obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Strength constraints of AISC load and resistance factor design specification and displacement constraints were imposed on frames. The effectiveness and robustness of harmony search algorithm, in comparison with genetic algorithm and ant colony optimization-based methods, were verified using three steel frames. The comparisons showed that the harmony search algorithm yielded lighter designs.  相似文献   

13.
《Computers & Structures》2007,85(7-8):340-349
This paper presents a heuristic particle swarm optimizer (HPSO) for optimum design of pin connected structures. The algorithm is based on the particle swarm optimizer with passive congregation (PSOPC) and a harmony search (HS) scheme. The HPSO algorithm handles the problem-specific constraints using a ‘fly-back mechanism’ method, and the harmony search scheme deals with the variable constraints. The method is verified and compared with the PSO and PSOPC algorithms used for the designs of five planar and spatial truss structures. The results show that the HPSO algorithm can effectively accelerate the convergence rate and can more quickly reach the optimum design than the two other algorithms.  相似文献   

14.
This paper proposes a tournament-based harmony search (THS) algorithm for economic load dispatch (ELD) problem. The THS is an efficient modified version of the harmony search (HS) algorithm where the random selection process in the memory consideration operator is replaced by the tournament selection process to activate the natural selection of the survival-of-the-fittest principle and thus improve the convergence properties of HS. The performance THS is evaluated with ELD problem using five different test systems: 3-units generator system; two versions of 13-units generator system; 40-units generator system; and large-scaled 80-units generator system. The effect of tournament size (t) on the performance of THS is studied. A comparative evaluation between THS and other existing methods reported in the literature are carried out. The simulation results show that the THS algorithm is capable of achieving better quality solutions than many of the well-popular optimization methods.  相似文献   

15.
无迹卡尔曼滤波(UKF)被广泛应用于工程实际中,但传统UKF在滤波过程进行无迹变换(UT)时的待选参数为固定值,这会带来一定误差.为了获取最优的待选参数,提出基于和声差分进化(HSDE)的UKF改进算法,并在目标跟踪中对该算法进行应用.和声差分进化算法对待选参数kappa进行最优选择,跳出局部最优的现象还有很强的收敛性,通过改进可进一步提高UKF算法滤波精度.Matlab仿真结果表明,基于和声差分进化的UKF改进算法精度更高.  相似文献   

16.
A method to find optimal topology and shape of structures is presented. With the first the optimal distribution of an assigned mass is found using an approach based on homogenisation theory, that seeks in which elements of a meshed domain it is present mass; with the second the discontinuous boundaries are smoothed. The problem of the optimal topology search has an ON/OFF nature and has suggested the employment of genetic algorithms. Thus in this paper a genetic algorithm has been developed, which uses as design variables, in the topology optimisation, the relative densities (with respect to effective material density) 0 or 1 of each element of the structure and, in the shape one, the coordinates of the keypoints of changeable boundaries constituted by curves. In both the steps the aim is that to find the variable sets producing the maximum stiffness of the structure, respecting an upper limit on the employed mass. The structural evaluations are carried out with a FEM commercial code, linked to the algorithm. Some applications have been performed and results compared with solutions reported in literature.  相似文献   

17.
This paper presents a novel approach to optimize the design of planar mechanisms with revolute joints for function generation or path synthesis. The proposed method is based on the use of an extensible-link mechanism model whose strain energy is minimized to find the optimal rigid design. This enables us to get rid of assembly constraints and the use of natural coordinates makes the objective function simpler. Two optimization strategies are developed and then discussed. The first one relies on alternate optimizations of design parameters and point coordinates. The second one uses multiple partial syntheses as starting point for a full synthesis process. The question of finding the global optimum is also addressed and developed. A simple algorithm is proposed to find several local optima among which the designer may choose the best one taking other criteria into account (e.g. stiffness, collision, size,...). Three applications are presented to illustrate the strategies while mentioning their limits.  相似文献   

18.
This paper describes the vibration optimum design for the low-pressure steam-turbine rotor of a 1007-MW nuclear power plant by using a hybrid genetic algorithm (HGA) that combines a genetic algorithm and a local concentration search algorithm using a modified simplex method. This algorithm not only calculates the optimum solution faster and more accurately than the standard genetic algorithm but can also find the global and local optimum solutions. The objective function is to minimize the resonance response (Q-factor) of the second occurring mode in the excessive vibration. Under the constraints of shaft diameter, bearing length and clearance, these factors play a very important role in the design of a rotor-bearing system. In the present work, the shaft diameter, bearing length and clearance are chosen as the design variables. The results show that the HGA can reduce the excessive response at the critical speed and improve the stability.  相似文献   

19.
《Computers & Structures》2007,85(21-22):1635-1646
Single layer latticed domes are lightweight and elegant structures that provide cost-effective solutions to cover the large areas without intermediate supports. The topological design of these structures present difficulty due to the fact that the number of joints and members as well as the height of the dome keeps on changing during the design process. This makes it necessary to automate the numbering of joints and members and the computation of the coordinates of joints in the dome. On the other hand the total number of joints and members in a dome is function of the total number of rings exist in the dome. Currently no study is available that covers the topological design of dome structures that give the optimum number of rings, the optimum height of crown and the tubular cross-sectional designations for the dome members under the given general external loading. The algorithm presented in this study carries out the optimum topological design of single layer lattice domes. The serviceability and strength requirements are considered in the design problem as specified in BS5950. The algorithm takes into account the nonlinear response of the dome due to effect of axial forces on the flexural stiffness of members. The optimum solution of the design problem is obtained using coupled genetic algorithm. Having the total number of rings and the height of crown as design variables provides the possibility of having a dome with different topology for each individual in the population. It is shown in the design example considered that the optimum number of joints, members and the optimum height of a geodesic dome under a given external loading can be determined without designer’s interference.  相似文献   

20.
A heuristic particle swarm ant colony optimization (HPSACO) is presented for optimum design of trusses. The algorithm is based on the particle swarm optimizer with passive congregation (PSOPC), ant colony optimization and harmony search scheme. HPSACO applies PSOPC for global optimization and the ant colony approach is used to update positions of particles to attain the feasible solution space. HPSACO handles the problem-specific constraints using a fly-back mechanism, and harmony search scheme deals with variable constraints. Results demonstrate the efficiency and robustness of HPSACO, which performs better than the other PSO-based algorithms having higher converges rate than PSO and PSOPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号