首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
为了降低并行时间交替采样系统中通道失配误差的 硬性,利用两个标准斜波 信号的时域特性,对斜波信号多次采样,采样点减去偏置误差得到的无偏置采样值,从而求 解采样点的时间误差和增益误差联立方程,计算时间和增益误差。本文算法的采样点数和推导计算量较少,是一种快速而 精确的工程实用算法;并使用Matlab对本文算法进行模拟仿真证明其可行性,并通过Farrow 结构的滤波器对估计所得的通道失配误差进行校正验证,校正后的无杂散动态范围(SFDR,spurious free dynamic range)至少达到50dB。  相似文献   

2.
时间交替ADC系统通过几片低速的ADC芯片进行并行交替采样,可以成倍地提高系统的采样频率,同时保持较高的分辨率[1]。但是由于芯片及具体实现过程中一些实际因素的影响,不可避免地会引入通道失配误差[2]。本文利用两片ADC芯片及外围电路来实现时间交替ADC系统,并通过Matlab软件对采样数据进行通道失配误差的估计和校正。Matlab仿真结果表明,该系统的采样率基本上达到了单片ADC的两倍,同时其通道失配误差通过算法校正后得到了有效地消除。  相似文献   

3.
刘进军  陈颖 《电讯技术》2007,47(6):155-157
时间交替采样技术对通道失配误差十分敏感,而基于混合滤波器组的采样技术降低了对通道失配误差的敏感,但前端模拟分析滤波器的稳定性难于设计限制了其工程应用。结合时间交替和混合滤波器组采样技术,提出了一种易于工程实现的基于混合滤波器组的时间交替采样技术。仿真结果表明,该技术能显著提高采样系统的精度。  相似文献   

4.
介绍了一种基于时间交替采样结构的高速ADC系统,整个系统采用全数字方式实现时间交替采样技术,结构灵活多变。使用2片ADC芯片及外围电路、FPGA作为逻辑控制和数据接收缓存,来搭建时间交替ADC系统的硬件电路。其最高采样率可达400MSPS,采样精度为12位。通过分析时间交替ADC系统的原理及其通道误差特性,利用Matlab软件分析通道失配误差来源,对采集到的数据进行误差估计和校正  相似文献   

5.
多片ADC并行采集系统的增益误差补偿   总被引:1,自引:0,他引:1  
尹亮  周劼  姚军 《现代电子技术》2007,30(17):170-171
时间交叉采样结构是提高模数转换系统采样率的一种有效途径。由于制造工艺的局限,这种结构会引入通道失配误差而限制系统的性能。通道失配误差包括偏置误差、增益误差和时间误差。提出了一种基于频域计算增益误差对其进行补偿的方法,并通过Matlab仿真验证了算法的有效性和可行性。  相似文献   

6.
张磊  邓云凯  王宇  郑世超  杨亮 《雷达学报》2014,3(5):556-564
方位多通道技术是合成孔径雷达(SAR)实现高分宽测的手段之一。在多通道系统中通道失配是不可避免的,这会导致SAR 图像模糊。已有的通道失配校正方法大多依赖于系统参数以及场景内容。参数的不确定性将会大大降低校正算法的稳定性。该文提出了一种改进的通道失配校正方法,根据失配产生的原因,将通道失配分为距离增益误差、脉冲采样时钟误差和传输相位误差3 项。前两项误差通过交替估计进行补偿,而传输相位误差则通过代价函数给予估计。该方法对成像场景的依赖较小,基于机载多通道验证平台实测数据的实验验证了该方法的有效性。   相似文献   

7.
马仑  廖桂生  杨鹏  明洋 《电子学报》2014,42(5):912-917
并行交替采样系统的性能依赖于各通道的精确配合,相对于传统单通道采样系统,其面临更多的系统误差源.未补偿的失配误差将导致采样波形非线性失真、输出信噪比降低以及无伪峰动态范围损失等.本文提出了一种新的并行交替采样系统误差校正方法,在频域利用相邻频率点输出矢量对应信号子空间的旋转关系和正交投影矩阵的唯一性,实现增益误差以及时基误差的精确估计.该方法无需迭代,估计精度较高,对噪声以及偏置误差稳健,并且可以同时完成信号重构.仿真数据的处理结果验证了本文方法的有效性.  相似文献   

8.
为了提高时间交织模数转换器(TIADC)的有效分辨率,需要对其通道之间的线性/非线性失配误差进行估计和补偿。该文针对M通道TIADC的带有记忆效应的非线性失配误差提出了一种自适应盲校正算法。通过子通道重构结构(SCR)重构非线性误差信号,并通过滤波降采样最小均方(FDLMS)算法估计非线性失配误差系数。实验仿真结果表明,该方法可以有效校正带有记忆效应的非线性失配误差,并且可以大大降低实现难度和硬件资源消耗。  相似文献   

9.
该文提出一种改进的时间交错采样模数转换器(TIADC)失配误差补偿方法。系统通过误差参数和简化的拉格朗日插值算法分别实现了对偏置、增益的失配误差补偿和采样时间的失配误差补偿。该补偿方法在FPGA中采用低复杂度的定点运算实现,在TIADC硬件平台中实现了对多通道ADC采样数据的线上校正。实验结果表明:所提改进方法在仿真环境下使无杂散动态范围提升了51 dB,并且在硬件实现过程中使SFDR优化达45 dB。在保持失配误差估计精度和补偿效果优良的前提下,该方法不仅降低了算法的计算复杂度,而且该补偿结构不受TIADC通道数目的限制。  相似文献   

10.
随着现代宽带雷达通讯的发展,对雷达回波信号的采集和目标的特征提取成为研究者关注的焦点.由于雷达回波的高频信号高达几十兆赫兹,时间交替采样模数转换器(ADC)系统便可在其中发挥重要作用,但这种结构会引入时间、增益和偏置3种主要的通道失配误差.该文对通道失配误差作了分析,建立了3种误差并存的非均匀采样信号频谱的数学模型,并在此基础上提出了该文的误差联合测量高效实时校正算法,最后在现场可编程门阵列(FPGA)中完成了整个算法的实现.  相似文献   

11.
To significantly increase the sampling rate of an A/D converter (ADC), a time-interleaved ADC system is a good option. The drawback of a time-interleaved ADC system is that the ADCs are not exactly identical due to errors in the manufacturing process. This means that time, gain, and offset mismatch errors are introduced in the ADC system. These errors cause distortion in the sampled signal. In this paper, we present a method for estimation and compensation of the mismatch errors. The estimation method requires no knowledge about the input signal except that it should be bandlimited to the Nyquist frequency for the complete ADC system. This means that the errors can be estimated while the ADC is running. The method is also adaptive to slow changes in the mismatch errors. The estimation method has been validated with simulations and measurements from a time-interleaved ADC system.  相似文献   

12.
To significantly increase the sampling rate of an analog-to-digital converter (ADC), a time-interleaved ADC system is a good option. The drawback of a time-interleaved ADC system is that the ADCs are not exactly identical due to errors in the manufacturing process. This means that time, gain, and offset mismatch errors are introduced in the ADC system. These errors cause distortion in the sampled signal. In this paper, we present a method for estimation and compensation of the time mismatch errors. The estimation method requires no knowledge about the input signal, except that it should be band limited to the foldover frequency /spl pi//T/sub s/ for the complete ADC system. This means that the errors can be estimated while the ADC is running. The method is also adaptive to slow changes in the time errors. The Cramer-Rao bound (CRB) for the time error estimates is also calculated and compared to Monte Carlo simulations. The estimation method has also been validated on measurements from a real time-interleaved ADC system with 16 ADCs.  相似文献   

13.
Sample-time error among the channels of a time-interleaved analog-to-digital converter (ADC) is the main reason for significant degradation of the effective resolution of the high-speed time-interleaved ADC. A calibration technique for sample-time mismatches has been proposed and implemented at a low level of complexity. The calibration method uses random data and is especially suitable for ADCs used in digital data communication systems. An 800-MS/s four-channel, time-interleaved ADC system has been implemented to evaluate the performance of the technique. The experimental results show that the spurious-free dynamic range of the ADC system is improved to 58.1 dB at 350 MHz. The ADC system achieves a signal-to-noise and distortion ratio of 59.6 dB at 5 MHz and 50.1 dB at 350 MHz after calibration.  相似文献   

14.
This article presents a 14-bit, 100-MS/s time-interleaved pipeline ADC, which samples input signal from 210-MHz IF-band. Digital self-calibration is employed to compensate gain mismatch and offset between time-interleaved channels as well as mismatches arise from a single ADC channel. A timing skew-insensitive parallel S/H circuit is utilized in order to avoid timing skew between parallel ADC channels. The ADC, fabricated in a 0.35-μm BiCMOS (SiGe) takes an area of 10.2 mm2, reaches an ENOB of 11.4 bits with a 79.9-dB SFDR at 192.5-MHz input and draws 1.4 W from a 3.0-V supply.  相似文献   

15.
Estiamtion and Correction of Mismatch Errors in Time-Interleaved ADCs   总被引:1,自引:0,他引:1  
In data acquisition systems, with help of time-interleaved analog-to-digital converter (TIADC) architecture, the maximum sample rate of the whole system can be increased efficiently. However, inevitable offset mismatch, gain mismatch, and timing error between time-interleaved channels degrade the sampling performance. In order to develop the mismatched TIADC structure, this paper first proposes a new time-domain algorithm to estimate the three aforementioned mismatch errors, and then puts forward a calibration method to calibrate the mismatch errors. Finally, numerical simulations are presented to verify the proposed estimation and calibration algorithm.  相似文献   

16.
伴随着宽带雷达系统的发展,信号带宽越来越大,从而对模数转换器(ADC)的转换速度要求也越来越高。为满足宽带系统需求,需要ADC能够在数百兆甚至上GHz转换速度下实现较高精度的数据转换,这对ADC芯片设计提出了很高的要求。基于0.18 μm BiCMOS 工艺,设计了一种时间交织流水线架构的超高速ADC,前端采用一个超高速高精度跟踪保持器,转换核心采用四路并行流水线时域交织工作,内部集成多相位时钟控制电路。实测结果表明:该ADC芯片在800 MS/s 速度下性能良好,部分通道最高工作速度可达1.2 GS/s。  相似文献   

17.
Offset mismatch, gain mismatch, and sample-time error between time-interleaved channels limit the performance of time-interleaved analog-to-digital converters (ADCs). This paper focuses on the sample-time error. Techniques for correcting and detecting sample-time error in a two-channel ADC are described, and simulation results are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号