首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
T5热处理对挤压态ZK60镁合金组织性能的影响   总被引:1,自引:0,他引:1  
对均匀化、挤压、挤压 T5三种状态的ZK60镁合金的组织及拉伸性能进行了研究.结果表明,铸态ZK60合金经450℃×14 h均匀化处理后,其组织基本为单相固溶体,塑性大大提高,伸长率提高近一倍;以不同挤压比挤压后,其晶粒均得到细化,力学性能得到不同程度的提高,在挤压比为30时,合金的综合性能最优;挤压材经T5处理后,晶粒度变化不大,但析出相明显增多并部分聚集长大,导致其强度、硬度提高,而伸长率却略有降低.  相似文献   

2.
用金相显微分析、扫描电镜分析及能谱分析等方法研究了Sr对ZK60镁合金晶粒细化的影响.结果表明:添加少量的Sr对ZK60镁合金有很好的组织细化效果,但其细化效率受Sr加入量和熔体保温时间的影响较大.在给定熔体保温时间的条件下,随着Sr质量分数从0.01%增加到0.1%,晶粒细化效率逐渐提高.在给定Sr加入量的条件下,当熔体保温时间为20~80min时,晶粒细化效率随熔体保温时间的延长而提高;当熔体保温时间超过80min后,晶粒细化效率随熔体保温时间的延长而降低.  相似文献   

3.
本文研究了挤压比和挤压温度对AZ31镁合金热挤压材显微组织和力学性能的影响.结果表明,挤压可以显著细化AZ31合金的显微组织,挤压比越大,晶粒尺寸越细小,力学性能得到较大提高;随着挤压温度的升高,晶粒有所长大,抗拉强度基本呈减小趋势,而延伸率则先升后降;挤压比为35、挤压温度为350℃时,可得到细化均匀的合金组织和良好的力学性能.  相似文献   

4.
镁合金在汽车、通讯电子和航空航天领域正得到日益广泛的应用,但其室温和高温力学性能仍有待于提高。利用光学显微镜、扫描电子显微镜、X射线衍射仪和差示扫描量热仪分析了铸态ZK60-xLa(x=0~3)合金的组织和相组成,测试了其硬度和拉伸力学性能。结果表明,随着La含量的增加,铸态组织逐渐细化,低熔点MgZn2相逐渐减少直至消失,而生成的高熔点τ1-Mg42Zn53La5新相逐渐增多,且第二相趋于连续网状分布于晶界处。硬度HV分别在低和高La含量时出现峰值。随着La含量的增加,室温抗拉强度σb和延伸率δ分别由ZK60合金的225 MPa和9%逐渐降至ZK60-3.04La合金的137 MPa和1.5%,拉伸断口由韧性断裂和脆性断裂的复合方式向单一的脆性断裂转变。但La的添加能有效提高合金的高温拉伸力学性能:室温时,ZK60-1.03La合金的σb要低于ZK60合金约25 MPa;423 K时,ZK60-1.03La和ZK60合金的σb分别降至181和174 MPa,前者已高于后者7 MPa;448 K时,两合金分别进一步降至168和150 MPa,两者差距进一步拉大至18MPa。这是由于ZK60-1.03La合金组织中只存在高热稳定性的τ1-Mg42Zn53La5相,可有效地钉扎晶界和阻碍高温晶界滑移。  相似文献   

5.
Pb对AM60镁合金组织及性能的影响   总被引:1,自引:0,他引:1  
采用金相显微镜、扫描电镜以度电子万能拉仲实验机等设备研究了Pb的添加对AM60合金显微组织和力学性能的影响。蛄果表明:Pb能够细化AM60镁合金中的α—MS和β—Mg17Al12的晶粒。抑制二次β的析出,并且Pb可以改善B—Mg17Al12相形态及分布。Pb通过细晶强化增加了合金强度、伸长率和硬度,使合金的断裂机制从脆性解理断裂转变为准解理断裂。  相似文献   

6.
采用光学和扫描电子显微观察、X射线衍射及拉伸试验研究了反向挤压AZ80镁合金不同热处理状态下的显微组织及性能.结果表明:反向挤压AZ80镁合金热处理后析出的β-Mg17Al12相(β相)在不同热处理状态下形貌不同.经T6热处理后,β相在晶界处呈层片状析出,与挤压态相比,合金的强度稍有降低,但延伸率明显提高;经T5热处理后,β相在晶界处仍呈层片状,而在晶内呈颗粒状,与挤压态相比,合金的强度明显提高,但延伸率降低.  相似文献   

7.
选择Ca为AZ40M、ZK61M的合金化元素,采用光学显微镜、X射线衍射仪、扫描电镜能谱等手段,开发性试验不同量Ca对镁合金AZ40M、ZK61M铸态组织和铸态力学性能的影响,通过合理控制合金化元素Ca的加入量,使AZ40M、ZK61 M镁合金的抗拉强度、屈服强度和延伸率均获得最佳值;并测试了拉伸性能随Ca含量不同的变化规律,获得镁合金AZ40M和ZK61M铸锭内部组织均匀化。  相似文献   

8.
为提高WE系列生物镁合金的力学性能,采用重力铸造法制备了Mg-5Y-2Nd-1Gd-0.5Zr (质量分数,WE53)镁合金,并对铸态合金进行了固溶处理(T4),固溶+时效处理(T6)和挤压加工.利用光学显微镜和扫描电子显微镜观察了合金的显微组织,并利用拉伸试验机和显微硬度计测试了合金室温力学性能.结果表明,铸态合金屈服强度为130 MPa,伸长率为10.2%,T6处理可显著提高铸态合金的强度和硬度,降低合金的伸长率;挤压变形明显提高合金的强度和硬度,伸长率与铸态相当.通过适当的热处理和挤压变形可显著改善WE53镁合金的力学性能.  相似文献   

9.
通过OM、SEM及阿基米德法等手段,研究超声处理对AZ80镁合金凝固组织、密度和力学性能的影响。结果表明:610℃超声处理可以降低晶粒尺寸,减少枝晶数量。经过超声处理后,合金密度由1.770g/cm3升至1.805g/cm3,抗拉强度由138MPa升高到170.5MPa,延伸率由2.5%提高为4.0%。  相似文献   

10.
利用原位拉伸扫描电镜观察,研究ZK60合金及含稀土Y的ZK60(0.9Y)合金热轧板材动态拉伸过程中裂纹萌生和扩展情况,讨论合金的显微组织与断裂行为的相互关系.实验表明:在拉伸过程中,合金轧制态试样裂纹以撕裂的形式进行扩展,断口区域有解理、准解理断裂痕迹,ZK60(0.9Y)合金裂纹萌生所需载荷大于ZK60合金,且在拉伸过程中发生第2相的破碎,主裂纹沿第2相扩展,基体中的二次裂纹多萌生于第2相周围.  相似文献   

11.
采用刚粘塑性有限元软件对ZK60合金四道次等通道转角挤压(ECAP)过程进行数值模拟。对一至四道次ECAP试样进行晶粒组织模拟,观察晶粒细化程度的分布和变化规律。通过多道次ECAP实验,利用金相显微观察试样头部和尾部的晶粒尺寸的变化以及动态再结晶形成机理。对比有限元数值模拟与实验组织分析结果,探索利用有限元模拟与实验分析相结合的方法,研究镁合金ECAP成形过程的晶粒组织变化规律。  相似文献   

12.
采用雾化法制得ZK60合金粉末,并用掺胶法制备ZK60合金棒材,研究热挤压后ZK60合金的微观组织、相组成及力学性能.结果表明:合金粉末主要由α-Mg固溶体构成,呈枝晶与等轴晶混合组织,晶粒尺寸5~10μm;在后续热挤压过程中粉末之间结合良好,晶粒进一步细化,同时合金基体中大量析出MgZn_2球形纳米颗粒;经T5(175℃保温12h)热处理后,析出相密度呈增加趋势.挤压变形后材料的屈服强度(σ_(0.2))、最大抗拉强度(σ_(UTS))和伸长率(δ)分别为286.3MPa、337.7MPa及5.6%;随后T5处理可进一步提高强度((σ_(0.2))=300.1MPa,σ_(UTS)=340.5 MPa),增加塑性(δ=12.3%).  相似文献   

13.
Ca、Mn对镁合金凝固组织的影响   总被引:1,自引:1,他引:0  
石路  李江委  管仁国  温景林 《有色矿冶》2008,24(1):23-25,55
通过对镁合金铸锭后显微组织的观察,结合SEM能谱分析,研究了Ca、Mn元素对镁合金组织的影响.通过研究,发现Mg-2.0Mn的显微组织是由基体组织(α-Mg)和点状析出的组织(α-Mn)组成;Mg-0.5Ca的显微组织是由(α-Mg)基体组织和非平衡结晶形成的Mg2Ca相组成.Ca、Mn对镁合金的组织均有细化作用,当同时加入Ca、Mn合金元素时,镁合金的显微组织会更加细小,晶粒趋于均匀圆整,同时第二相颗粒减少.其原因是:Ca提高了Mn与镁合金的润湿性,提高了Mn的溶解与扩散能力,温度降低Mn原子从合金中析出,为合金凝固提供了大量的晶核.  相似文献   

14.
对ZK60镁合金进行不同工艺的时效处理,分析时效工艺对组织和硬度的影响,同时研究了时效前后的延伸率变化。结果表明:时效处理后,随时效时间的延长和温度的升高,合金组织出现晶粒长大,强化相的扩散,溶解;在120℃,12h处理后,硬度提高43.44%,延伸率达到24.87%。  相似文献   

15.
刘静安 《铝加工》2011,(2):36-39
论述了镁及镁合金挤压工模具的特点及与铝及铝合金挤压工模具的异同,分别介绍了镁及镁合金棒材模、无缝管材模、型材模及平面组合模的设计要点并举例说明,对指导生产实践有一定的价值。  相似文献   

16.
Al-Mg-Si系合金的热加工工艺与可挤压性   总被引:5,自引:1,他引:4  
刘静安 《铝加工》2002,25(1):1-4,10
Al Mg Si(6××× )系合金是最重要的挤压合金 ,其中又以 6 0 6 3、 6 0 82、 6 0 6 0和 6 0 0 5四种合金及其变种应  用最广泛。本文全面系统而深入地分析了Al Mg Si系合金锭坯的均匀化及冷却方式、锭坯挤压前加热温度与加热方式、挤压成形工艺及在线淬火方式、人工时效及停放时间等对上述四种合金的可挤压性、挤压力、最大生产能力以及力学性能等的影响  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号