首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
稀土钢连铸过程中,结晶器内上浮至渣金界面的高熔点稀土夹杂物如果不能被保护渣有效的溶解吸收,进入保护渣后会改变渣的理化性能,影响连铸顺行。通过高温实验研究了Ce AOl3在连铸保护渣中的溶解机制,探究了保护渣w(Ca O)/w(Al2O3)(简写为C/A)对溶解过程的影响。实验结果表明,Ce AOl3溶解过程中,夹杂物-渣界面会形成Ce3+和Ca2+的浓度边界层。在C/A为0.8的保护渣中会形成中间产物Ca Ce Al3O7,随着C/A增加到1.0,中间产物Ca Ce Al3O7减少;继续增加C/A至1.2,中间产物消失。其溶解机制为,低C/A渣中Al O45-较多,在浓度边界层中Ce AOl3溶解形成的Ce3+与渣中Ca2+、Al O4  相似文献   

2.
为了控制低碳铝镇静钢中Al2O3夹杂物,并提升渣系对Al2O3夹杂物吸附能力,采用FactSage 8.1模拟计算CaO-SiO2-Al2O3-5%MgO-5%FeO渣系的等黏度图和等ΔC/η(ΔC=C■-C■,η为渣的黏度)值线图。根据模拟计算图选取合适的五元精炼渣做Al2O3的吸附试验,试验研究了Al2O3在CaO-SiO2-Al2O3-5%MgO-5%FeO渣系中的溶解速率,讨论了Al2O3棒浸入深度、直径、转速、渣成分以及温度对Al2O3溶解速率的影响,求解了Al2O3在溶解过程中的活化能。最后,采用场发射扫描电子显微镜(Apreo S HiVa...  相似文献   

3.
刘承军  亓捷  姜茂发 《钢铁》2023,(9):116-126
低反应性CaO-Al2O3基保护渣工业应用过程中,结晶器内渣条粗大,黏结报警频发,无法实现稳定连铸生产。针对上述问题,在分析了工业原渣存在问题的基础上,设计开发了新型CaO-Al2O3基保护渣并进行了工业应用。结果表明,工业用高铝钢连铸保护渣结晶性能较强,Ca12Al14O32F2和LiAlO2等物相过早析出是恶化保护渣性能的主要原因。相图分析表明,调整w(CaO)/w(Al2O3)值是调控熔渣酸碱性和析晶性能的有效措施之一。当w(CaO)/w(Al2O3)从0.93增加至1.65时,保护渣的熔化温度由1 050℃降至959℃;受熔体结构解聚影响,1 300℃下黏度由0.132 Pa·s降至0.054 Pa·s。随着w(CaO)/w(Al2O3)的增加,保护渣的...  相似文献   

4.
钢厂使用原保护渣[/%:25.64CaO,22.72SiO2,5.69MgO,8.29Al2O3,11.87(Na2O+K2O),5.49CaF2,5.10BaO]生产的300mm×360 mm低碳钢连铸坯表面易产生网状裂纹。通过分析保护渣润滑性能与铸坯冶金质量之相关性和研究碱度、MgO和Al2O3对保护渣熔点的影响,CaF2和碱土金属化合物含量对保护渣粘度影响,优化了保护渣的成分[/%:22.06CaO,23.63SiO2,4.76MgO,8.29Al2O3,11.90(Na2O+K2O),2.32CaF2,4.18BaO],应用结果表明,使保护渣液层的厚度由原保护渣的6~7.5 mm提高到7~10 mm,完全消除了连铸坯的网状裂纹。  相似文献   

5.
采用旋转柱体法对不同类型的含氟连铸保护渣黏度进行检测,并基于Arrhenius方程通过非线性回归分析建立了新的黏度预测模型,分析了组分变化对黏度的影响。结合模型计算和实验检测,建立了CaF2?Na2O?Al2O3?CaO?SiO2?MgO渣系的等黏度图。结果表明,与传统的含氟连铸保护渣黏度预测模型相比,该模型计算的偏差在10%以内,当渣中w(CaF2)超过20%时,偏差逐渐增大,主要由于氟化物挥发造成炉渣成分变化,最终黏度实测值与炉渣初始成分不符,造成模型无法对黏度有效预测。此外,研究发现,CaF2的增加能显著降低炉渣黏度,而Al2O3和Na2O对黏度的影响受CaF2含量的限制。当w(CaF2)>17%,炉渣黏度随Al2O3含量增加而减小,当w(CaF2)<17%,Al2O3的增加使炉渣黏度显著增大;当w(CaF2)>11.5%,炉渣黏度随Na2O含量增加显著下降,当w(CaF2)<11.5%,Na2O含量变化对黏度的影响并不明显。此外,该等黏度图表明低黏度区w(CaF2)接近14%。通过调整等黏度图中各组分比例,可以改善保护渣的黏度和流动性,供钢铁工业应用。   相似文献   

6.
CaO-Al2O3-Ce2O3渣系是稀土钢新型冶金渣系的基础渣系,其相平衡关系等热力学信息的缺失限制了相关渣系的研究和开发。本文通过高温相平衡实验,结合X射线衍射分析、扫描电镜及能谱分析,研究了CaO-Al2O3-Ce2O3渣系的相平衡关系。根据1100℃的实验结果,明确了该渣系中十种物相间的共存关系,以Alkemade连线的形式展示,包括:2CaO·Al2O3·Ce2O3-CaO、2CaO·Al2O3·Ce2O3-Ce2O3、2CaO·Al2O3·Ce2O3-3CaO·Al2O...  相似文献   

7.
通过钢渣平衡实验研究,分析了精炼渣成分对82B钢液T.O和点状不变形夹杂物成分的影响;通过Fact-Sage热力学计算,得出硅锰脱氧82B钢中MgO·Al2O3尖晶石夹杂的生成条件.结果表明:降低精炼渣碱度、提高Al2O3含量均利于钢水全氧含量的降低;随着Al2O3含量的提高,复合氧化物夹杂的熔点升高.当熔渣碱度为0.93、Al2O3含量为5.1%时,夹杂物熔点最低;熔渣碱度为1.14、Al2O3含量为25.6%时,高Al2O3活度的熔渣导致MgO·Al2O3尖晶石夹杂生成;熔渣碱度为1.97、Al2O3含量为25.9%时,由于碱度升高,钢中无MgO·Al2O3尖晶石类夹杂物生成;熔渣碱度为0.93、Al2O3含量为5.1%时,由于Al2O3含量降低,钢中无MgO·Al2O3尖晶石类夹杂物生成,且夹杂物熔点较低.   相似文献   

8.
张宇斌  文光华  于雄  唐萍 《特殊钢》2013,34(6):22-25
浇铸过程无磁钢20Mn23A12V(/%:0.14~0.20C、≤0.50Si、21.5~25.0 Mn、1.50~2.50Al、0.04~0.10V)中的Al-[Al]易与保护渣中的SiO2-(SiO2)反应,导致结晶器保护渣变性,要求低碱度、低Al2O3的保护渣;并且该钢合金元素含量高,液相线温度低,要求低熔化温度的保护渣。设计了3种低碱度(0.55~0.61)、低熔化温度(904~1 015℃)的结晶器保护渣(/%:20.2~24.4CaO、35.3~40.0SiO2、2.2~4.1Al2O3、3.0~5.0B2O3),经25 t中间包,200 mm×1 260 mm板坯连铸试验。结果表明,5.0%B2O3,碱度0.50~0.60、熔化温度1 010℃、粘度0.215Pa·s的无磁钢20Mn23Al2V保护渣在0.60~0.65 m/min拉速下能较好的满足连铸工艺要求。   相似文献   

9.
袁志鹏  朱立光  王杏娟  王博  张燕超 《钢铁》2022,57(12):97-108
 针对高拉速薄板坯连铸保护渣现场使用过程中卷渣风险加剧、黏结报警频发等问题,通过使保护渣产生非牛顿流体行为,从而有效解决上述问题。该种新型保护渣具有剪切变稀的特性,即在较低剪切速率下具有较高黏度、在较高剪切速率下具有较低黏度。基于现场数据,计算出高拉速薄板坯结晶器钢液面表面区域的剪切速率为10~90 s-1,结晶器弯月面及以下区域的剪切速率可达120~1 600 s-1。采用旋转圆筒法研究了Al2O3对保护渣剪切变稀性质的影响。采用Oswald-De Waele幂律模型对剪切变稀行为进行了定量分析。结果表明,随着Al2O3含量的增加,保护渣剪切变稀性质先增强后减弱,Al2O3质量分数为8.61%的试样剪切变稀性质最强,其流动性指数最低达到0.764 4。研究发现,非牛顿流体保护渣具有的剪切变稀性质能够满足在结晶器钢液面表面区域和弯月面及以下区域内对保护渣黏度的要求。基于高拉速薄板坯连铸的具体工艺参数,建立结晶器内多相耦合模型,通过模型计算发现,保护渣的剪切变稀性质增强不仅会明显降低剪切卷渣的风险,提高结晶器弯月面区域液渣流入的均匀性,而且在结晶器弯月面及以下区域具有更厚的液态渣膜,更容易实现全程液态润滑,同时提高了渣耗量,进一步剖析了保护渣剪切变稀性质的作用效果。本研究为开发非牛顿流体高拉速薄板坯连铸保护渣提供了理论依据。  相似文献   

10.
在Fe-Cr-Al合金中添加微量的稀土元素可显著改善合金的使用性能, 文中以电渣重熔生产Fe-Cr-Al合金所用稀土渣为研究对象, 根据离子-分子共存理论(IMCT)建立了1 823 K时CaF2-Al2O3-CaO-Ce2O3四元渣系热力学质量作用浓度模型.结果表明:当渣系中CaO和Al2O3的质量百分数之比维持在1:1, 即wCaO /wAl2O3=1时, 随着Ce2O3含量增加, 渣中铈铝酸盐Ce2O3·Al2O3质量作用浓度(活度)显著增加, 但炉渣物相种类没有变化.渣系中Ce2O3含量分别在10 %, 20 %, 30 %, 40 %时, wCaO /wAl2O3值对组元活度的影响各不相同但有共同特征, 表现在处于约1.0~1.8时, CaO活度增加最迅速, Ce2O3活度增加, Ce2O3·Al2O3活度下降, 说明渣中CaO含量增加促进了Ce2O3·Al2O3分解而导致Ce2O3活度增加, 选取渣系进行熔融和X射线衍射实验, 用jade 5.0软件分析物相, 实验结果与计算一致.   相似文献   

11.
使用偏光显微镜,系统对比分析了邯郸钢厂超低碳钢SPHC(0.020%~0.055%C,70 mm板坯保护渣/%:33.14SiO2,3.86Al2O3,3.88MgO,31.52CaO,8.27K2O+Na2O,7.55F-1,3.93C)、包晶钢SS400(0.18%~0.22%C,70 mm板坯保护渣/%:29.62SiO2,4.63Al2O3,2.05MgO,35.86CaO,10.43 K2O+Na2O,7.55F-1,3.93C)和Ti微合金钢Q345B(0.15%~0.19C,0.04%~0.05%Ti,260 mm板坯保护渣/%:31.10SiO2,5.21Al2O3,5.07MgO,35.46CaO,6.22K2O+Na2O,6.96F-1,6.96C)对应的渣膜的矿相组成、结晶率和显微结构。结果表明,3种渣膜从铸坯至结晶器侧均呈现"结晶层-玻璃层"交替结构。SPHC钢渣膜有90%~95%的玻璃相,结晶相仅出现少量枪晶石,低结晶率有利于其润滑铸坯;SS400钢渣膜结晶率为55%~60%,析出较多的枪晶石和部分黄长石,有利于控制铸坯传热;Ti微合金钢Q345B渣膜结晶率略高于SS400钢,析出的黄长石、枪晶石和硅灰石能同时满足连铸对其润滑和控制传热的需求,可得到良好的铸坯质量。  相似文献   

12.
0.88%Si无取向硅钢的生产工艺为100 t BOF出钢时加300kg石灰,终点[C]0.035%~0.05%,出钢温度1640~1650℃,RH吹氧脱碳,加99.0%Al-Fe合金6.69 kg/t,加70%Si-Fe合金15.70 kg/t,70 mm板坯连铸过程全程保护浇铸,使用镁质碱性中间包覆盖剂。分析结果表明,RH终点[O]28×10-6,铸坯[O]22×10-6,RH-前[N]为16×10-6,RH过程增氮4×10-6,RH结束到铸坯增氮6×10-6;RH脱碳终点时钢中夹杂物以球形MnO·Al2O3为主;RH出站时以不规则形状的Al2O3为主,并伴有少量单独存在的CaS夹杂;中间包钢液内的夹杂物主要以不规则形状的Al2O3为主;铸坯中多为不规则形状的Al2O3以及少量AlN,还有少量由结晶器卷渣引起的含Na成分的复合夹杂物。  相似文献   

13.
Al2O3是一种两性氧化物,在高碱度条件下呈现酸性氧化物特征,而在低碱度条件下表现出碱性氧化物的行为,是冶金熔渣中常见的一种组元.以超高碱度保护渣(综合碱度R=1.75)为研究对象,分析了Al2O3对保护渣流动特性、熔化特性和凝固特性的影响规律.研究结果显示:渣中Al2O3质量分数每增加1%,熔化温度上升5℃左右,转折温度下降12℃左右,开始结晶温度平均下降11℃左右.平均结晶速率随渣中Al2O3质量分数的增加而减小.且随着Al2O3质量分数的增加,保护渣结晶矿相中晶体比例逐渐降低,但晶体保持枪晶石的种类不变.  相似文献   

14.
研究了氟含量1.9%的保护渣系(%:27~30CaO、30~33SiO2、2~3Al2O3、2~3MgO、10~12R2O、1~2Fe2O3、4~5C粉、2Li2O、4CaF2、0~8B2O3)的理化性能。结果表明:随着渣中B2O3含量的增加,保护渣熔点、析晶温度、粘度均降低,但B2O3含量超过6%以后,对保护渣牯度几乎没有影响;B2O3含量为2%~4%时,表面张力较低,有利于结晶器内钢液中夹杂物的上浮排除,得到洁净铸坯。  相似文献   

15.
对“120 t BOF-LF-RH-CC”流程GCrl5轴承钢的洁净度研究结果表明,LF精炼结束以A12O3 • MgO尖 晶石和Al2O3-MgO-CaO夹杂为主,RH真空处理后, Al2O3- MgO尖晶石几乎全部消失,钢中夹杂物以液态钙铝酸盐为主,T.0含量降至5.3x10-6;浇注过程中间包重新成Al2O3- MgO尖晶石;RH终点和中间包钢水以及连铸坯未发现≥20um钙铝酸盐夹杂。  相似文献   

16.
刘南  成功  任英  张立峰 《工程科学学报》2022,44(12):2069-2080
大尺寸CaO?Al2O3类夹杂物容易引起轴承钢疲劳失效,大尺寸CaO?Al2O3类夹杂物的控制是生产高端GCr15轴承钢的关键因素之一。精炼过程中合金引入杂质元素、渣精炼和精炼过程中卷渣是铝脱氧轴承钢中大尺寸CaO?Al2O3类夹杂物的主要潜在来源。硅铁合金通常用来提高轴承钢的淬火和抗回火软化性。本文通过实验室实验、样品分析和热力学计算,研究了硅铁合金中金属钙元素对铝脱氧钢中夹杂物的影响。硅铁合金主要由深色的硅相和浅色的硅铁相组成,钙元素在硅相和硅铁相的界面处以金属化合物形式存在。研究发现,加入硅铁合金后,钢中总钙(T.Ca)含量增加,钢中的Al2O3和MgO·Al2O3夹杂物被改性为CaO?Al2O3类夹杂物,夹杂物尺寸随着夹杂物中CaO含量增加而减小,钢中并未生成大尺寸CaO?Al2O3类夹杂物。随着钢中T.Ca含量增加,夹杂物平均尺寸降低,钢中T.O含量增加,表明硅铁合金中金属钙元素不会直接引起钢中大尺寸CaO?Al2O3类夹杂物的生成。但是生成的小尺寸固相CaO?Al2O3类夹杂物在水口处粘附结瘤,结瘤物脱落后会成为钢中大尺寸CaO?Al2O3类夹杂物的来源之一。   相似文献   

17.
焦魁明 《钢铁》2020,55(12):39-45
 为了探究镁处理对40Cr铝镇静钢中夹杂物的影响,在120 t钢包内进行了镁处理工业试验。采用FactSage热力学软件计算了在试验炉钢水成分条件下夹杂物的稳定区域图,镁处理夹杂物的改质路径为Al2O3→Al2O3+MgO·Al2O3→MgO·Al2O3→MgO+ MgO·Al2O3→MgO+MgS;结合金相显微镜和ASPEX-explorer自动扫描电镜分析了镁对40Cr铝镇静钢中夹杂物的形态、尺寸及成分的影响。结果表明,镁处理后,铸坯中夹杂物尺寸及数量较未加镁的试样有明显减少,尺寸主要分布在0~3 μm,夹杂物密度和夹杂物的长宽比明显减小;钢中夹杂物等效直径为0~3 μm的比例大于未添加镁的,这说明镁处理对40Cr铝镇静钢中夹杂物有弥散化及形貌控制的效果。镁处理后的40Cr铝镇静钢中夹杂物主要为MnS包裹MgO·Al2O3为核心的复合夹杂物,而对比炉钢中夹杂物主要为MnS、Al2O3-MnS以及钙铝酸盐类夹杂物。  相似文献   

18.
针对津西钢铁厂H型钢Q235B(0.14%~0.18%C)铸坯(宽面550 mm,窄面440 mm,腹板90 mm)经常出现纵裂等缺陷,基于原有保护渣(%:29~30SiO2、25~26CaO、10~11Al2O3、3.0~3.5Fe2O3、15~17C、≤0.5H2O),通过正交实验和优化设计,开发出一种高性能保护渣(%:37.50SiO2、37.50CaO、6Al2O3、7CaF2、12Na2O、7石墨、1.5炭黑)。与原保护渣相比,优化渣的半球点温度、粘度和熔化时间分别从1 167℃,0.77 Pa·s和57 s下降至1 092℃,0.27 Pa·s和32.5 s。优化渣应用表明,当拉速由0.98 m/min提高到1.2 m/min时,铸坯质量良好。  相似文献   

19.
为了研究铝脱氧不锈钢开浇过程中二次氧化对钢水洁净度和夹杂物演变的影响,实现钢中夹杂物的有效控制,分别在LF精炼出站、开浇过程中不同时刻取样,采用扫描电镜、ASPEX自动分析仪、热力学计算等不同方法研究了铝脱氧不锈钢中夹杂物的形貌、成分、数量和尺寸分布,确定了铝脱氧不锈钢开浇过程中夹杂物的演变行为和对应机理.研究结果表明,开浇过程钢中氧氮质量分数、夹杂物数密度变化规律类似,20 min时分别增加至7.4×10-5、0.0674%、17.1 mm-2,此后随着浇铸过程进行逐渐降低;LF精炼出站时钙处理改性夹杂物效果较好,其类型主要为Ca O-Al2O3-SiO2-MnO-(MgO),开浇过程中二次氧化降低了钙处理操作的作用效果,20 min时夹杂物类型转变为MnO-Al2O3-SiO2-CaO复合夹杂物,浇铸约60 min时,连铸过程中钢水的洁净度基本达到稳定,此时夹杂物类型重新转变为Ca O-Al2O3-SiO  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号