首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thermal protection of building envelope is one of the most effective ways for building energy conservation. In this study, the determination of optimum insulation thickness for residential roof with different surface colors is studied based on life cycle cost analysis and solar-air degree-hours in four typical cities of hot summer and cold winter zone of China. Four insulation materials including expanded polystyrene, extruded polystyrene, foamed polyurethane and foamed polyvinyl chloride are analyzed. The solar-air degree-hours are calculated considering night time operation and 24-h operation of the cooling and heating equipments. Life cycle total costs (LCT), life cycle savings (LCS) and payback period resulting from the use of optimum insulation thickness are calculated. Depending on different cities, insulation materials and roof surface colors, optimum insulation thicknesses of a typical roof vary from 0.065 to 0.187 m and payback periods vary from 0.9 to 2.3 years for 24-h operation of cooling and heating equipments; optimum insulation thicknesses are between 0.051 and 0.149 m and the payback periods are between 1.1 and 2.8 years for night time operation. At last, the effects of present worth factor, thermal resistance and climate on the optimum thicknesses are studied which is very useful for practical use to estimate the optimum thickness of insulation material.  相似文献   

2.
The net climatic effect of increasing the amount of insulation in buildings through the use of halocarbon-blown foam insulation involves three factors: the greenhouse gas emissions associated with the energy used to make the insulation; the climatic impact of leakage of the halocarbon blowing agent from the insulation during its manufacture, use, and at the time of disposal; and the reduction in heating and/or cooling energy use and associated greenhouse gas emissions. Recent studies and assessments leave the impression that the use of halocarbon-blown foam insulation has a strong net positive impact on climate, with the reduction in heating-related emissions being 20–100 times greater than the CO2-equivalent halocarbon emissions. This result applies only to the overall impact of rather modest levels of insulation applied to a pre-existing roof or wall with negligible thermal resistance. It is appropriate to consider the time required for heating-related emission savings to offset halocarbon and manufacturing emissions for the addition of successive increments of insulation—the marginal payback time. For typical blowing agent leakage rates and for insulation levels found in high-performance houses, marginal payback times can be in excess of 100 years using halocarbon blowing agents, but are only 10–50 years using non-halocarbon blowing agents. With a fixed thickness of insulation, the difference in heating energy savings using insulation with different blowing agents is generally only a few per cent, in spite of differences in thermal conductivity of up to 66%. The net savings in CO2-equivalent emissions is larger using non-halocarbon blowing agents, with the relative benefit of using non-halocarbon blowing agents greater the greater the thermal resistance of the envelope element prior to adding foam insulation.  相似文献   

3.
The natural cooling of energy-efficient buildings using latent heat thermal energy storage (LHTES) that is integrated into the building services makes possible energy savings and improved thermal comfort. In this article, studies of the free-cooling potential for different climatic locations are presented. Six cities from around Europe with a wide range of climatic conditions were selected. The size of the LHTES was optimized on the basis of the calculated cooling degree-hours. First, we analysed the influence of the width of the phase change temperature range and determined the optimal melting temperature of the phase change material (PCM). Then, the optimal LHTES was selected, based on the ratio of the mass of the PCM and the volume flow rate of air ventilating the building. We found that the optimum PCM has a melting temperature that is approximately equal to the average ambient air temperature in the hottest month, and that the free-cooling potential is proportional to the average daily amplitude of the ambient air's temperature swings. For all the analysed climatic conditions the PCM with a wider phase change temperature range (12 K) was found to be the most efficient. The optimal size of the LHTES for the free cooling of buildings is between 1 and 1.5 kg of PCM per m3/h of fresh ventilation air.  相似文献   

4.
Correlation between thermal conductivity and the thickness of selected insulation materials for building wall has been analyzed. The study has found that a relationship between the thermal conductivity (k) and optimum thickness (xopt) of insulation material is non-linear which obeys a polynomial function of xopt = a + bk + ck2, where a = 0.0818, b = −2.973, and c = 64.6. This relationship will be very useful for practical use to estimate the optimum thickness of insulation material in reducing the rate of heat flow through building wall by knowing its thermal conductivity only.  相似文献   

5.
This paper summarizes the results obtained from the energy and thermal performance assessment of residential and non-residential low-energy buildings that were designed to minimize fossil energy use. They are located in the province of La Pampa, central Argentina, in a temperate continental climate that shows extreme hot and cold records during the summer and winter seasons, respectively. The common applied technologies for saving energy were passive solar heating, natural ventilation for cooling and daylighting. The glazing area in the principal functional spaces facing to the North oscillates between 11 and 17% of the building useful areas. All the studied buildings are massive, with the exception of an auditorium that was designed with a lightweight insulated technology. The mean thermal transmittance of the envelope is 0.45 W/(m2 K). Double glazing and hermetic carpentry were used to reduce thermal losses (U-value = 2.8 W/(m2 K)). The volumetric heat loss coefficient (G-value) oscillates between 0.90 and 1.00 W/(m3 K). During the design and thermal simulation convective-radiative heat transfer coefficients were estimated through a dimensional equation (h = 5.7 + 3.8 ws, wind speed). On internal surfaces, convective-radiative heat transfer coefficients of 8 and 6 W/(m2 °C) (for surfaces with and without solar gain, respectively) were applied. The monitoring process provided information on the energy and thermal behaviour under use and non-use conditions. The measured value of energy consumption was similar to the expected value that was used during the pre-design stage. Building technologies work well during the winter season, allowing 50–80% of energy savings. However, overheating is still an unresolved problem during the summer. Interviews with occupants revealed that they need both, information about functional details, and good-practice guidance to manage thermal issues of the building. In most cases, the annual consumption of energy was lower than those established by the Low Energy Housing German Standards and the Minirgie Switzerland Certificate. Despite their relative cost increase during the last years, the use of insulation technology and the application of passive solar devices involved an extra cost of only 3% in our works. Provided the expected depletion of natural gas production in the coming decade, the importance of applying energy-efficiency guidelines will increase very soon in Argentina in order to match the requirements of a new national energy matrix.  相似文献   

6.
A lecture theatre with dimension 16 m × 8.4 m × 3.6 m located at Roorkee (28.58°N, 77.20°E) in the northern region of India, is selected to calculate the monthly and annual cooling load (kWh) and cooling capacity of air conditioning system by a computer simulation. The paper also presents the results of a study investigating the effect of different glazing systems on windows and the reduction in building cooling load. DesignBuilder software has been used for the computer simulation for calculating the cooling load. The paper aims to investigate the reduction in thermal gains and cooling load requirements by varying the U-values of different glazing types, insulating the ceiling, providing cool roofs, interior and exterior insulation on walls, and replacing the conventional fluorescent tube lamp (FTL) by energy efficient compact fluorescent lamp (CFL). Installation of false ceiling, wall insulation, different glazing types and lighting systems are cost effective with normalized annual saving ranging from 17% to 19.8% from this retrofitting project. Furthermore, the study also highlights the potential of reducing the emission of CO2 and equivalent carbon credit. Retrofitting techniques strongly influence the level of energy saving, although the payback period is generally quite long of order 8 years.  相似文献   

7.
Passive cooling is considered as an alternative technology to avoid unwanted heat gains, to reduce urban heat islands and to generate cooling potential for buildings (limiting air-conditioning energy). According to materials and surface treatments, the roof can represent to be a major heat gain source from opaque elements of the building fabric, heating up the outer surface and increasing heat flow by conduction. This paper presents low-cost new radiative materials (1 ∉/m2) allowing to limit heat gains during diurnal cycle for hot seasons. To evaluate the relevance of these new substrates, their reflective UV-VIS-IR behavior are studied and compared to classical roofed materials available in industrial and developing countries. A 48 m2 experimental roof having different surfaces (plate steel sheets, fiber cement, terra cotta tiles and corrugated sheets) allows to determine the temperature ratio δ between uncoated and coated materials. Up to 34% surface temperature gains are obtained for white coated CS, 25% for FC and ∼18% for TCT and PSS. According to uncoated materials for a surface temperature T0 = 60 °C, simulations showed that the low-cost white opaque reflective roofs (50 m2) presented in this study would reduce cooling energy consumption by 26-49%.  相似文献   

8.
The objective of this study was to conduct an experimental analysis to investigate the performance and energy saving of the well-known desiccant air-conditioning system in Thailand. The system was composed of a silica gel bed, a split type air-conditioner (1.5 ton refrigeration) installed in a room of volume 76.8 m3, air ducts and a blower. Its design allows us to adjust the percentages of return air, outdoor air and indoor air mixed to the air leaving the desiccant, and desiccant bed thickness as well. Tests were conducted on several days with relatively similar ambient conditions. Under the test conditions used here, a 5 cm bed thickness is recommended with a maximum adsorption rate of 473 g/h. The optimum percentages of air ratios are as follows: 15% outdoor air, 15% return air (mixed together at the desiccant bed inlet) and 70% of indoor air mixed to the dry air leaving the desiccant. The corresponding electricity saving was about 24%. As expected, simple economic analysis indicated that the desiccant air-conditioning is only viable for large cooling capacities and central air-conditioned buildings. The payback period is about 4 yr.  相似文献   

9.
Morocco has very limited indigenous energy resources; consequently, with the increase in energy consumption over the last years, studies focusing on energy saving as well as usage of sustainable energy resources have accelerated. However, in Morocco the buildings have an important part in the energy consumption; therefore, the most logical solution is energy saving by using thermal insulation. For this purpose, in this study, six cities, namely Agadir, Tangier, Fez, Ifran, Marrakech and Errachidia are selected to represent the six zones of Morocco. Using the life-cycle cost analysis method, the optimum insulation thicknesses as well as energy savings and payback periods for electricity tariff and three different types of insulation material have been determined.  相似文献   

10.
For decades efforts have been made to reduce the greenhouse gases emissions of buildings by reducing their energy demand with governmental regulations in Europe, pushing towards very low thermal transmittances (U-values) with ever thicker insulation layers for new buildings. However, there is no linear relationship between the insulation thickness and the heat losses. Therefore, above a certain thickness the consumption of buildings does not decrease significantly. Hereafter a life cycle analysis, including emissions before the building becomes operational is applied to evaluate the impact of the increasing thickness of components on the overall emissions. Publicly available product data sheets are used to compare four insulation materials under three scenarios. These analyses yield interesting results showing that energy-intensive insulation materials lead to a negative impact in the overall energy balance after a certain thickness. Even though there is not always a pronounced optimum insulation thickness, it is logical that further reductions in U-value for new buildings should hence be carefully evaluated. The results show that the optimal thickness is around 20 cm for most materials, while the important major savings come from the first 10 cm.  相似文献   

11.
A sustainable and environmentally responsible building concept aims at a high workplace comfort, a significantly reduced heating and cooling demand, a high-efficient plant system, and the use of renewable energy sources to condition the built environment. This paper presents a comprehensive analysis of the heating and cooling concepts of 11 low-energy buildings in terms of energy use, efficiency and occupant thermal comfort. All buildings investigated employ environmental energy sources and sinks – such as the ground, ground water, rainwater and the ambient air – in combination with thermo-active building systems. A limited primary energy use of about 100 kWhprim/(m2neta) as a target for the complete building service technology (HVAC and lighting) was postulated for all buildings presented. With respect to this premise, a comprehensive long-term monitoring in high time resolution was carried out for two to five years, with an accompanying commissioning of the building performance. Measurements include the useful heating and cooling energy use, auxiliary energy use for the hydraulic system, as well as end and primary energy use, occupant thermal comfort and local meteorological conditions. A new methodology is proposed for a holistic approach to the evaluation of heating and cooling concepts, which not only considers the occupants thermal comfort, but also the useful energy consumption and the efficiency of the generation, distribution and delivery of heating and cooling energy.  相似文献   

12.
This study describes the production of low density thermal insulation boards made from coconut husk and bagasse without the use of chemical binding additives. Dwelling in Thailand use thermal insulation to reduce air conditioning loads; the aim of this study was to develop a thermal insulation with lower environmental footprint than conventional materials. The hot pressing method was used and this article reports on the effect of board density and pressing conditions on the properties of the insulation boards. Mechanical properties of the coconut husk and bagasse insulation boards were measured for comparison with the standard employed in Thailand: JIS A 5905: 2003 Insulation Fibreboards. It was found that the bagasse insulation board with a density of 350 kg/m3, using a 13 min pressing time at a temperature of 200 °C, met all of the requirements except for swelling thickness. Thermal conductivity of the coconut husk and bagasse insulation boards was measured according to ISO 8301 and this suggested that both insulation boards have thermal conductivity values ranging from 0.046 to 0.068 W/mK which were close to those of conventional insulation materials such as cellulose fibres and mineral wool.  相似文献   

13.
Recently adaptive thermal-comfort criteria have been introduced in the international indoor-climate standards to reduce the heating/cooling energy requirements. In 2008, the Finnish Society of Indoor Air Quality (FiSIAQ) developed the national adaptive thermal-comfort criteria of Finland. The current study evaluates the impact of the Finnish Criteria on energy performance in an office building. Two fully mechanically air-conditioned single offices are taken as representative zones. A simulation-based optimization scheme (a combination of IDA-ICE 4.0 and a multi-objective genetic-algorithm from MATLAB-2008a) is employed to determine the minimum primary energy use and the minimum room cooling-equipment size required for different thermal comfort levels. The applicability of implementing energy-saving measures such as night ventilation, night set-back temperature, day lighting as well as optimal building envelope and optimal HVAC settings are addressed by investigating 24 design variables. The results show that, on average, an additional 10 kWh/(m2 a) primary energy demand and a larger 10 W/m2 room cooling-equipment size are required to improve the thermal comfort from medium (S2) to high-quality (S1) class; higher thermal comfort levels limit the use of night ventilation and water radiator night-set back options. Compared with the ISO EN 7730-2005 standard, the Finnish criterion could slightly decrease the heating/cooling equipment size. However, it significantly increases both the heating and cooling energy demand; the results show 32.8% increase in the primary energy demand. It is concluded that the Finnish criterion-2008 is strict and does not allow for energy-efficient solutions in standard office buildings.  相似文献   

14.
Steady natural convective airflow in a novel type glazing system with integrated semi-transparent photovoltaic (PV) cells has been analyzed numerically using a stream function vorticity formulation. Based on the resulting numerical predictions, the effects of Rayleigh numbers on airflow patterns and local heat transfer coefficients on vertical glazing surfaces were investigated for Rayleigh numbers in the range of 103 ≤ Ra ≤ 2 × 105. Significant agreement for the Nusselt numbers was observed between numerical simulation results in this study and those of earlier experimental and theoretical results available from the literature. In addition, the effect of air gap thickness in the cavity on the heat transfer through the cavity is evaluated. The optimum thickness of the air layer in this research is found to be in the range of 60–80 mm. This novel glazing system type could not only generate electricity but also achieve potential energy savings by reducing the air conditioning cooling load when applied in subtropical climatic conditions and simultaneously provide visual comfort in the indoor environment.  相似文献   

15.
Micro gas turbines are considered to meet the electrical, domestic hot water, heating and cooling energy needs of a residential building located in Tehran, Ahvaz and Hamedan. The building is 10 stories high and has a total of 8000 m2 floor area with the peak demands of electricity of 32.96 kW, DHW of 0.926 kW, heating load of 1590 kW and the cooling load of 2028 kW, when the building is located in Tehran. With these demands, 30 micro turbines of 30 kW (nominal power) are needed to meet all the energy needs of the building. The excess electricity generated by the micro turbines is to be used in a heat pump, and the energy in the exhaust gases is to be used to meet other thermal energy needs of the building. With proper energy conservation measures and the use of ceiling fans in each room, the peak heating and cooling demands of the building were reduced to 225 kW and 760 kW, respectively. With these measures, two micro gas turbines of 30 kW nominal capacity, or one of 40 kW, could meet all the electrical, DHW, heating and a great portion of the cooling needs of the building. The remaining cooling needs of the building during the hot hours of summer could be met by an additional absorption refrigeration, utilizing natural gas as its energy source. It is recommended that with energy conservation measures, the heating and cooling loads of buildings be reduced as much as possible, and micro gas turbines be employed to meet the electrical demands and a portion of heating and cooling needs. The remaining thermal energy needs are to be met through the use of natural gas. Only with these measures, the on-site combined heat and power (OS-CHP) is a viable option for residential buildings in Iran.  相似文献   

16.
The city of Denizli is in the 3rd climatic region in Turkey and there is a heating requirement for a period of approximately five months. During this period, thermal insulation of buildings is very important in minimizing the energy usage and reducing emission. In this study, environmental impact of optimum insulation thickness in external walls has been investigated for the case of Denizli, Turkey. In the calculations, coal was used as the fuel source and the expanded polystyrene as the insulation material. The results proved that when the optimum insulation thickness was used, energy consumption was decreased by 46.6% and the emissions of CO2 and SO2 were reduced by 41.53%.  相似文献   

17.
It is well known that it is necessary to insulate the buildings to decrease the thermal demand and to decrease the use of heating and cooling. Due to the high cost of fossil fuels and to the necessity to reduce CO2 emissions, and also due to the new building regulations more attention is paid to the insulation of buildings. Different insulation materials are available in the market. Usually, they are compared by their thermal conductivity and with theoretical calculations, but there are no experimental comparisons available, where the behavior of such insulation materials in a building is compared over time. This is why the authors started a comparison of three typical insulation materials, polyurethane, polystyrene, and mineral wool. For this purpose, four house-like cubicles were constructed (with a size of 2.4 m × 2.4 m × 2.4 m) and their thermal performance throughout the time was measured. The cubicles were built under a conventional Mediterranean construction system, differing only in the insulation material used. During 2008 and the first months of 2009 the performance of these cubicles was evaluated, and the results are presented in this paper.  相似文献   

18.
The impact from using cool roof coatings on the cooling and heating loads and the indoor thermal comfort conditions of residential buildings for various climatic conditions is estimated. The energy cooling loads and peak cooling demands are estimated for different values of roof solar reflectance and roof U-value. The results show that increasing the roof solar reflectance reduces cooling loads by 18–93% and peak cooling demand in air-conditioned buildings by 11–27%. The indoor thermal comfort conditions were improved by decreasing the hours of discomfort by 9–100% and the maximum temperatures in non air-conditioned residential buildings by 1.2–3.3 °C. These reductions were found to be more important for poorly or non-insulated buildings. For the locations studied, the heating penalty (0.2–17 kWh/m2 year) was less important than the cooling load reduction (9–48 kWh/m2 year). The application of cool roof coatings is an effective, minimal cost and easy to use technique that contributes to the energy efficiency and the thermal comfort of buildings.  相似文献   

19.
利用DeST-h软件对10组0~90 mm不同外墙保温层厚度的典型西北新农村建筑采暖能耗进行了模拟分析,并确定了最佳外墙经济保温层厚度。结果表明外墙保温可明显降低建筑采暖能耗,采暖节能率可达到26%,外墙保温层厚度的增加在降低建筑采暖能耗的同时增大了外墙保温投资费用,采用生命周期成本分析法确定西北新农村建筑采用挤塑保温板为保温材料时最佳外墙经济保温层厚度为55 mm。  相似文献   

20.
To maintain ultra-low particle concentrations, cleanrooms can require several hundred air changes per hour. These ventilation rates make cleanrooms 30-50 times more energy intensive than the average U.S. commercial building. There are an estimated 12 million m2 of cleanroom space in the U.S., consuming over 370 PJ of energy each year. This paper explores opportunities to improve the energy efficiency of cleanrooms while maintaining or improving operating conditions.This paper documents the modeling of a 1600 m2 cleanroom in upstate New York. The TRNSYS model includes TMY2 weather data; building geometry and material properties; empirical data on occupancy, lighting and process equipment; and sophisticated HVAC systems. The model was validated based on metered steam, chilled water and electricity usage. Under 8% error was achieved in all fields.Four strategies were simulated: a heat recovery system for exhaust air, resulting in an 11.4% energy reduction with a 2.7-year simple payback; solar preheating of desiccant dehumidifier regeneration air (2.4% energy reduction, 11.5-year payback); improved lighting controls (0.3% energy reduction, 1.5-year payback); and demand-controlled filtration (4.4% energy reduction, 3.1-year payback). Implementation of recommended strategies is predicted to save 9 TJ, 862 tonnes of CO2, and $164k annually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号