首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Balmorel model has been used to calculate the economic optimal energy system configuration for the Scandinavian countries and Germany in 2060 assuming a nearly 100% coverage of the energy demands in the power, heat and transport sector with renewable energy sources. Different assumptions about the future success of fuel cell technologies have been investigated as well as different electricity and heat demand assumptions. The variability of wind power production was handled by varying the hydropower production and the production on CHP plants using biomass, by power transmission, by varying the heat production in heat pumps and electric heat boilers, and by varying the production of hydrogen in electrolysis plants in combination with hydrogen storage. Investment in hydrogen storage capacity corresponded to 1.2% of annual wind power production in the scenarios without a hydrogen demand from the transport sector, and approximately 4% in the scenarios with a hydrogen demand from the transport sector. Even the scenarios without a demand for hydrogen from the transport sector saw investments in hydrogen storage due to the need for flexibility provided by the ability to store hydrogen. The storage capacities of the electricity storages provided by plug-in hybrid electric vehicles were too small to make hydrogen storage superfluous.  相似文献   

3.
Poul Alberg stergaard 《Energy》2009,34(9):1236-1245
The utilisation of fluctuating renewable energy sources is increasing world-wide; however, so is the concern about how to integrate these resources into the energy systems. The design of optimal energy resource mixes in climate change mitigation actions is a challenge faced in many places. This optimisation may be implemented according to economic objectives or with a focus on techno-operational aims and within these two main groupings, several different criteria may potentially be applied to the design process.In this article, a series of optimisation criteria are reviewed and subsequently applied to an energy system model of Western Denmark in an analysis of how to use heat pumps for the integration of wind power.The analyses demonstrate that the fact whether the system in question is modelled as operated in island mode or not has a large impact on the definition of the optimal wind power level. If energy savings and CO2 emission reductions beyond the system boundary are not included in the analysis, then it is either not feasible to expand wind power to a high degree or it is conversely more feasible to install relocation technologies that can utilise any excess production. The analyses also demonstrate that different optimisation criteria render different optimal designs.  相似文献   

4.
This paper presents the methodology and results of the overall energy system analysis of a 100% renewable energy system. The input for the systems is the result of a project of the Danish Association of Engineers, in which 1600 participants during more than 40 seminars discussed and designed a model for the future energy system of Denmark. The energy system analysis methodology includes hour by hour computer simulations leading to the design of flexible energy systems with the ability to balance the electricity supply and demand. The results are detailed system designs and energy balances for two energy target years: year 2050 with 100% renewable energy from biomass and combinations of wind, wave and solar power; and year 2030 with 50% renewable energy, emphasising the first important steps on the way. The conclusion is that a 100% renewable energy supply based on domestic resources is physically possible, and that the first step towards 2030 is feasible to Danish society. However, Denmark will have to consider to which degree the country shall rely mostly on biomass resources, which will involve the reorganisation of the present use of farming areas, or mostly on wind power, which will involve a large share of hydrogen or similar energy carriers leading to certain inefficiencies in the system design.  相似文献   

5.
This article presents a model for investing in renewable energies in the framework of the Spanish electricity market in a way that risk is minimised for the investor while returns are maximised. The model outlined here is based on an economic model for calculating cash flows intended to obtain the internal rate of return (IRR) of the different energies being studied: wind, photovoltaic, mini hydro and thermo electrical. The IRRs obtained are considered the returns on investments, while their standard deviations are considered associated risks. In order to minimise risk, a comprehensive portfolio of investments is created that includes all of the available energies by means of a system of linear equations. The solution of the linear system is graphically checked using the efficient frontier method for the different financing options. Several case studies within the Renewable Energies Plan (PER is its Spanish abbreviation) that is in force in Spain in the period 2005–2010 are analysed in order to illustrate the method, as are other case studies using different types of financing, helping us to reach the pertinent conclusions.  相似文献   

6.
By using the optimization software tool HOMER, this project aims at the energetic and economical optimization of a RES-based stand-alone system, already installed at Leicestershire, UK. Based on local meteorological data, an optimization strategy has been developed to identify the most economical and efficient scenarios for the generation of electricity to cover the desirable load in annual basis. Furthermore, the environmental-friendly character of the system was highly concerned in terms of emissions reduction, therefore the capability of an off-grid system was also investigated. The simulations show that an off-grid project with zero emissions is feasible, presenting the additional advantage of minimal capital investment costs. Finally, it is found that grid connection corresponds to very high operational costs in a long term.  相似文献   

7.
Hong Kong is highly vulnerable to energy and economic security due to the heavy dependence on imported fossil fuels. The combustion of fossil fuels also causes serious environmental pollution. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply. Hong Kong has the potential to develop clean renewable hydrogen energy to improve the environmental performance. This paper reviews the recent development of hydrogen production technologies, followed by an overview of the renewable energy sources and a discussion about potential applications for renewable hydrogen production in Hong Kong. The results show that although renewable energy resources cannot entirely satisfy the energy demand in Hong Kong, solar energy, wind power, and biomass are available renewable sources for significant hydrogen production. A system consisting of wind turbines and photovoltaic (PV) panels coupled with electrolyzers is a promising design to produce hydrogen. Biomass, especially organic waste, offers an economical, environmental-friendly way for renewable hydrogen production. The achievable hydrogen energy output would be as much as 40% of the total energy consumption in transportation.  相似文献   

8.
Recent experience from around the world suggests that feed-in tariffs (FITs) are the most effective policy to encourage the rapid and sustained deployment of renewable energy. There are several different ways to structure a FIT policy, each with its own strengths and weaknesses. This paper presents an overview of seven different ways to structure the remuneration of a FIT policy, divided into two broad categories: those in which remuneration is dependent on the electricity price, and those that remain independent from it. This paper examines the advantages and disadvantages of these different FIT models, and concludes with an analysis of these design options, with a focus on their implications both for investors and for society.  相似文献   

9.
A comparison is made between the ambient and conventional temperature alkaline electrolysers in terms of operational system, voltage efficiency and corrosion rates. The capital, operational and maintenance costs are reduced by reducing auxiliary equipment as well as auxiliary utilities in the ambient temperature alkaline electrolyser. Also, since auxiliary electricity consumption is reduced, the alkaline electrolyser is capable for dynamic, continuous and fast-response operation with renewable energy sources. The ambient temperature alkaline electrolyser is capable for wider operational range and faster response time when powered by wind energy sources. Although the voltage efficiency for hydrogen production is increased by about 12% at the conventional operating temperature, corrosion rate of the electrode is increased by a factor of about 6.3. The voltage efficiency for hydrogen production, however, is increased by about 12% by employing electrocatalyst in the ambient temperature alkaline electrolyser, and there is benefit of enhancing lifetime durability of the electrode as well as cell components at relatively lower operating temperature.  相似文献   

10.
PEM electrolysis for production of hydrogen from renewable energy sources   总被引:4,自引:0,他引:4  
Frano Barbir   《Solar Energy》2005,78(5):661-669
PEM electrolysis is a viable alternative for generation of hydrogen from renewable energy sources. Several possible applications are discussed, including grid independent and grid assisted hydrogen generation, use of an electrolyzer for peak shaving, and integrated systems both grid connected and grid independent where electrolytically generated hydrogen is stored and then via fuel cell converted back to electricity when needed. Specific issues regarding the use of PEM electrolyzer in the renewable energy systems are addressed, such as sizing of electrolyzer, intermittent operation, output pressure, oxygen generation, water consumption and efficiency.  相似文献   

11.
In this paper we assess the feasibility of various future energy production pathways for hydrogen. We argue that neither nuclear energy, nor coal gasification with carbon collection and storage can provide sufficient climate-neutral energy to be probable routes to a hydrogen future. Their contributions are likely to be too little and too late to be of much help. Hydroelectricity, geothermal and biomass energy can all provide base-load power, but even combined have limited potential, and are not always climate-neutral in operation. On the other hand, the high-potential renewable energy (RE) sources, particularly wind and direct solar energy, are intermittent. Further, wind resources are poorly matched to the existing distribution of world population. Wind power's high potential compared with present electricity demand, high return on energy invested, intermittency, and mismatch with load centres all favour hydrogen conversion and transmission to load centres.  相似文献   

12.
The role of district heating in future renewable energy systems   总被引:1,自引:0,他引:1  
Based on the case of Denmark, this paper analyses the role of district heating in future Renewable Energy Systems. At present, the share of renewable energy is coming close to 20 per cent. From such point of departure, the paper defines a scenario framework in which the Danish system is converted to 100 per cent Renewable Energy Sources (RES) in the year 2060 including reductions in space heating demands by 75 per cent. By use of a detailed energy system analysis of the complete national energy system, the consequences in relation to fuel demand, CO2 emissions and cost are calculated for various heating options, including district heating as well as individual heat pumps and micro CHPs (Combined Heat and Power). The study includes almost 25 per cent of the Danish building stock, namely those buildings which have individual gas or oil boilers today and could be substituted by district heating or a more efficient individual heat source. In such overall perspective, the best solution will be to combine a gradual expansion of district heating with individual heat pumps in the remaining houses. Such conclusion is valid in the present systems, which are mainly based on fossil fuels, as well as in a potential future system based 100 per cent on renewable energy.  相似文献   

13.
The problems of energy shortage, severe pollution, and global warming are becoming increasingly severe. Renewable energy systems with hydrogen have been widely used. In recent years, much literature has described the energy management of renewable energy systems with hydrogen in a comprehensive way. However, most of them are proposed and discussed from an academic point of view. There are likewise several different approaches and ideas in the patents that address the energy management of hydrogen renewable energy systems. Moreover, most patents are oriented toward industrial applications and still need to be reviewed and analyzed. To fill this gap, this paper reviews relevant US patents to find potential and industrial hydrogen applications and energy management strategies in renewable energy systems. The work presented in this paper will provide solutions and guidance in solving energy management problems in renewable energy systems.  相似文献   

14.
The purpose of this paper is to investigate price support for market penetration of renewable energy in developing nations through a decentralized supply process. We integrate the new decentralized energy support: renewable premium tariff, to analyze impacts of tariff incentives on the diffusion of renewable technology in Senegal. Based on photovoltaic and wind technologies and an assessment of renewable energy resources in Senegal, an optimization technique is combined with a cash flow analysis to investigate investment decisions in renewable energy sector. Our findings indicate that this support mechanism could strengthen the sustainable deployment of renewable energy in remote areas of Senegal. Although different payoffs emerged, profits associated with a renewable premium tariff are the highest among the set of existing payoffs. Moreover in analyzing impacts of price incentives on social welfare, we show that price tariffing schemes must be strategically scrutinized in order to minimize welfare loss associated with price incentives. Finally we argue that a sustainable promotion of incentive mechanisms supporting deployment of renewable technology in developing nations should be carried out under reliable institutional structures. The additional advantage of the proposed methodology is its ability to integrate different stakeholders (producers, investors and consumers) in the planning process.  相似文献   

15.
Financing investments in renewable energy : the impacts of policy design   总被引:1,自引:0,他引:1  
The costs of electric power projects utilizing renewable energy technologies (RETs) are highly sensitive to financing terms. Consequently, as the electricity industry is restructured and new renewables policies are created, it is important for policymakers to consider the impacts of renewables policy design on RET financing. This paper reviews the power plant financing process for renewable energy projects, estimates the impact of financing terms on levelized energy costs, and provides insights to policymakers on the important nexus between renewables policy design and financing. We review five case studies of renewable energy policies, and find that one of the key reasons that RET policies are not more effective is that project development and financing processes are frequently ignored or misunderstood when designing and implementing renewable energy policies. The case studies specifically show that policies that do not provide long-term stability or that have negative secondary impacts on investment decisions will increase financing costs, sometimes dramatically reducing the effectiveness of the program. Within U.S. electricity restructuring proceedings, new renewable energy policies are being created, and restructuring itself is changing the way RETs are financed. As these new policies are created and implemented, it is essential that policymakers acknowledge the financing difficulties faced by renewables developers and pay special attention to the impacts of renewables policy design on financing. As shown in this paper, a renewables policy that is carefully designed can reduce renewable energy costs dramatically by providing revenue certainty that will, in turn, reduce financing risk premiums.  相似文献   

16.
The main advantage of the hybrid system compared with separate array solar photovoltaic and stand-alone wind turbine is the possibility of the surplus energy storage by transforming it to hydrogen that can be use in fuel cells. However the design and sizing of this kind of technologies need to meet the local microclimate in order to reach higher efficacies. A tool based on an analytical model to sizing, analyze and assess the feasibility of the hybrid wind/photovoltaic/H2 energy conversion systems using real weather data is presented in this work. The model considers an energy balance analysis and electrical variables of the system components; the tool calculates the subsystems efficacy and proposes the improvements to increase the efficiency of the use in surplus energy produced by the hybrid system. To validate the analytical model, simulation based on wind speed and solar radiation measurements from meteorological monitoring station in a Mexican Caribbean City is discussed.  相似文献   

17.
Renewable energy remains a contested topic in South Africa. This paper argues that South Africa can build on the momentum surrounding its introduction of a feed-in tariff by enacting policies that may, if given adequate funding and political effort, allow the country to be a world leader in renewable energy. Given a variety of renewable energy policy options for moving forward, a majority of stakeholders consulted in this study strongly prefer the development of a renewable energy manufacturing cluster, in which government develops coordinated policy mechanisms that attract renewable energy manufacturers, over three other policies suggested by the authors. Interviews with key informants that play critical roles in this decision-making process suggest that there are reasons to remain cautiously optimistic about the country's renewable energy future while cognizant of the challenges that must still be overcome. Opportunities for a low carbon renewable energy transition in South Africa include the prevalence of broad stakeholder consultation, facilitated by civil society, and an innovative policy development context. Significant impediments also exist, however, and include pervasive social issues such as poverty and political inertia, along with the ongoing difficulties facing renewable energy technologies in reaching grid parity with inexpensive and abundant South African coal.  相似文献   

18.
The United States and Germany started out with very similar policies for renewable energy after the energy crisis of the 1970s. By the year 2000 they were on very different policy paths and, as a result, the German renewable energy industry has moved well ahead of that in the United States, both in terms of installed capacity in the country and in terms of creating a highly successful export market. In this paper, we reject some of the conventional explanations for this difference. Instead, these differences arise from the intersection of contingent historical events with the distinctive institutional and social structures that affect policy making in each country. Our analysis of the historical path-dependent dynamics of each country suggests that those who wish to further renewable energy policy in the United States need to take into account these institutional and social factors so that they will better be able to exploit the next set of favorable historical circumstances.  相似文献   

19.
Unlike the present energy system based on fossil fuels, an energy system based on renewable energy sources with hydrogen and electricity as energy carriers would be sustainable. However, the renewable energy sources in general have less emergy than the fossil fuels, and their carriers have lower net emergy. Because of that they would not be able to support continuous economic growth, and would eventually result in some kind of a steady-state economy. An early transition to renewable energy sources may prove to be beneficial in the long term, i.e., it may result in a steady state at a higher level than in the case of a transition that starts later. Once the economy starts declining it will not be able to afford transition to a more expensive energy system, and transition would only accelerate the decline. Similarly, if a transition is too fast it may weaken and drain economy too much and may result in a lower steady state. If a transition is too slow, global economy may be weakened by the problems related to utilization of fossil fuels (such as global warming and its consequences) before transition is completed and the result again would be a lower steady state. Therefore, there must be an optimal transition rate; however, its determination would require very complex models and constant monitoring and adjustment of parameters.  相似文献   

20.
As the world’s third leading economy and a major importer of fuels, the choice of future energy paths and policies that Japan makes in the next few years will have a significant influence on the energy security of the world as a whole, and of the Northeast Asia region in particular. In this article we describe the current status of and recent trends in the Japanese energy sector, including energy demand and supply by fuel and by sector. We then discuss the current energy policy situation in Japan, focusing on policies related to climate change targets, renewable energy development and deployment, liberalization of energy markets, and the evolution of the Japanese nuclear power sector. The final section of the article presents the structure of the Japan LEAP (long-range energy alternatives planning software system) dataset, describes several alternative energy paths for Japan – with an emphasis on alternative paths for nuclear power development and GHG emission abatement – and touches upon key current issues of energy policy facing Japan, as reflected in the modeling inputs and results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号