首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synergistic effect of Ca(OH)2 prepared by the wet-mixing method on lignite steam gasification process at different temperatures (700–900 °C) was analyzed in a spout-fluid bed reactor. Firstly, to avoid disturbance of volatile and tar, active carbon was used as a model compound. On the one hand, Ca(OH)2 effectively catalyzed the water-gas shift (WGS) reaction to improve H2 concentration, but the performance was weaker at higher temperature due to the enhancement of boudouard reaction and the weakening of WGS reaction. On the other hand, it was found that the (CO+2CO2)/H2 ratio of syngas produced at 700 °C in the presence of Ca(OH)2 was 0.82, which was much lower than that of the other cases, owning to the absorption of CO2. The synergistic effect was observed at this temperature, for the adsorption of CO2 altered equilibrium of the WGS reaction and further improved H2 concentration. Then two kinds of Chinese lignite (HLH and XM) were selected to further study the performance of Ca(OH)2 on optimizing the lignite steam gasification process. In the presence of Ca(OH)2, tar and char yields greatly reduced at the same reaction temperature, whereas the gas yields significantly increased. As a catalyst, Ca(OH)2 can not only promote solid–gas reaction to decrease char yield, but also accelerate tar decomposition to reduce its yield in syngas. Based on GC–MS data, it can be deduced that Ca(OH)2 has different catalytic activity on the steam reforming of tar with different molecular structures. Contrast to Class 4, tars of aliphatic hydrocarbons, Class 2 and Class 5 were clearly catalytic reformed. Hydrogen-rich gas can be produced at 800 °C and 900 °C owning to the catalytic effect of Ca(OH)2, but the highest H2 concentration was found at 700 °C due to the additional effect of CO2 absorption, which was supported by the results of thermogravity experiments.  相似文献   

2.
The effect of CO2 reactivity on CH4 oxidation and H2 formation in fuel-rich O2/CO2 combustion where the concentrations of reactants were high was studied by a CH4 flat flame experiment, detailed chemical analysis, and a pulverized coal combustion experiment. In the CH4 flat flame experiment, the residual CH4 and formed H2 in fuel-rich O2/CO2 combustion were significantly lower than those formed in air combustion, whereas the amount of CO formed in fuel-rich O2/CO2 combustion was noticeably higher than that in air. In addition to this experiment, calculations were performed using CHEMKIN-PRO. They generally agreed with the experimental results and showed that CO2 reactivity, mainly expressed by the reaction CO2 + H → CO + OH (R1), caused the differences between air and O2/CO2 combustion under fuel-rich condition. R1 was able to advance without oxygen. And, OH radicals were more active than H radicals in the hydrocarbon oxidation in the specific temperature range. It was shown that the role of CO2 was to advance CH4 oxidation during fuel-rich O2/CO2 combustion. Under fuel-rich combustion, H2 was mainly produced when the hydrocarbon reacted with H radicals. However, the hydrocarbon also reacted with the OH radicals, leading to H2O production. In fact, these hydrocarbon reactions were competitive. With increasing H/OH ratio, H2 formed more easily; however, CO2 reactivity reduced the H/OH ratio by converting H to OH. Moreover, the OH radicals reacted with H2, whereas the H radicals did not reduce H2. It was shown that OH radicals formed by CO2 reactivity were not suitable for H2 formation. As for pulverized coal combustion, the tendencies of CH4, CO, and H2 formation in pulverized coal combustion were almost the same as those in the CH4 flat flame.  相似文献   

3.
Noble-metal-free Cu(OH)2/TNTs (TNTs: TiO2 nanotubes) nanocomposite photocatalysts were successfully prepared by loading nano-Cu(OH)2 on TNTs via a hydrothermal-precipitation process. These were then characterized in terms of morphology and physicochemical properties by employing TEM, XRD, XPS, BET, UV–Vis DRS and PL. The effects of Cu(OH)2 loading, amount of catalyst on the photocatalytic hydrogen production performance of Cu(OH)2/TNTs were investigated in detail in aqueous methanol solution under UV irradiation. The results show that, compared with pure TNTs, the TNTs loaded with highly dispersed 8 wt% Cu(OH)2 exhibited remarkably improved activity for hydrogen production (the largest quantity of evolved hydrogen was ca. 14.94 mmol h−1 g−1 catalyst) with good photostability. This high activity is attributed to the strong synergistic function of Cu(OH)2/TNTs, including suitable potential of Cu(OH)2/Cu (E0 = −0.222 V) between conduction band (−0.260 V) of TNTs and the reduction potential of H+/H2 (E0 = 0.000 V), a unique tubular microstructure of TNTs coated with nano-Cu(OH)2, large BET specific surface area and high dispersion of Cu(OH)2. Furthermore, a process mechanism for methanol/water decomposition over Cu(OH)2/TNTs is proposed to understand its high activity.  相似文献   

4.
Al-α-Ni(OH)2 microspheres are modified with metallic Co and Y(OH)3, respectively, in order to improve the high-temperature electrochemical performance. The microstructure, morphology, and surface chemical state of the as-prepared and the modified Al-α-Ni(OH)2 microspheres are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), respectively. Metallic cobalt nanoparticles are distributed on the nanosheets of the microsphere edges. The existence of metallic Co and Y(OH)3 can be further verified from ICP and XPS results. The effect of metallic Co or Y(OH)3 on high-temperature performance of the Al-α-Ni(OH)2 microspheres is measured by galvanostatic charge–discharge experiments and cyclic voltammetric (CV) measurements. The discharge capacities of the Al-α-Ni(OH)2 microspheres, with optimized 5 wt% Co and 1 wt% Y(OH)3, are 283.5 mAh g−1 and 315 mAh g−1, respectively, much higher than that of the as-prepared Al-α-Ni(OH)2 (226.8 mAh g−1) at 0.2 C and 60 °C. Furthermore, the high-rate discharge capability at high temperature can be also improved for both the modified samples.  相似文献   

5.
The composites of (NaBH4+2Mg(OH)2) and (LiBH4+2Mg(OH)2) without and with nanometric Ni (n-Ni) added as a potential catalyst were synthesized by high energy ball milling. The ball milled NaBH4-based composite desorbs hydrogen in one exothermic reaction in contrast to its LiBH4-based counterpart which dehydrogenates in two reactions: an exothermic and endothermic. The NaBH4-based composite starts desorbing hydrogen at 240 °C. Its ball milled LiBH4-based counterpart starts desorbing at 200 °C. The latter initially desorbs hydrogen rapidly but then the rate of desorption suddenly decelerates. The estimated apparent activation energy for the NaBH4-based composite without and with n-Ni is equal to 152 ± 2.2 and 157 ± 0.9 kJ/mol, respectively. In contrast, the apparent activation energy for the initial rapid dehydrogenation for the LiBH4-based composite is very low being equal to 47 ± 2 and 38 ± 9 kJ/mol for the composite without and with the n-Ni additive, respectively. XRD phase studies after volumetric isothermal dehydrogenation tests show the presence of NaBO2 and MgO for the NaBH4-based composite. For the LiBH4-based composite phases such as MgO, Li3BO3, MgB2, MgB6 are the products of the first exothermic reaction which has a theoretical H2 capacity of 8.1 wt.%. However, for reasons which are not quite clear, the first reaction never goes to full completion even at 300 °C desorbing ∼4.5 wt.% H2 at this temperature. The products of the second endothermic reaction for the LiBH4-based composite are MgO, MgB6, B and LiMgBO3 and the reaction has a theoretical H2 capacity of 2.26 wt.%. The effect of the addition of 5 wt.% nanometric Ni on the dehydrogenation behavior of both the NaBH4-and LiBH4-based composites is rather negligible. The n-Ni additive may not be the optimal catalyst for these hydride composite systems although more tests are required since only one n-Ni content was examined.  相似文献   

6.
Supercapacitor, known as an important energy storage device, is also a critical component for next generation of hydrogen fuel cell vehicles. In this study, we report a novel route for synthesis of three-dimensional Ni(OH)2/graphene/nickel foam electrode by electrochemical depositing Ni(OH)2 nanoflakes on graphene network grown on nickel foam current collector and explore its applications in supercapacitors. The resulting binder-free Ni(OH)2/graphene/nickel foam electrode exhibits excellent supercapacitor performance with a specific capacitance of 2161 F/g at a current density of 3 A/g. Even as the current density reaches up to 60 A/g, it still remains a high capacitance of 1520 F/g, which is much higher than that of Ni(OH)2/nickel foam electrode. The enhanced rate capability performance of Ni(OH)2/graphene/nickel foam electrode is closely related to the presence of highly conductive graphene layer on nickel foam, which can remarkably boost the charge-transfer process at electrolyte–electrode interface. The three-dimensional graphene/nickel foam substrate also significantly improves the electrochemical cycling stability of the electrodeposited Ni(OH)2 film because of the strong adhesion between graphene film and electrodeposited Ni(OH)2 nanoflakes. Results of this study provide an alternative pathway to improve the rate capability and cycling stability of Ni(OH)2 nanostructure electrode and offer a great promise for its applications in supercapacitors.  相似文献   

7.
Nickel on zirconium-modified silica was prepared and tested as a catalyst for reforming methane with CO2 and O2 in a fluidized-bed reactor. A conversion of CH4 near thermodynamic equilibrium and low H2/CO ratio (1<H2/CO<2) were obtained without catalyst deactivation during 10 h, in a most energy efficient and safe manner. A weight loading of 5 wt% zirconium was found to be the optimum. The catalysts were characterized using X-ray diffraction (XRD), H2-temperature reaction (H2-TPR), CO2-temperature desorption (CO2-TPD) and transmission election microscope (TEM) techniques. Ni sintering was a major reason for the deactivation of pure Ni/SiO2 catalysts, while Ni dispersed highly on a zirconium-promoted Ni/SiO2 catalyst. The different kinds of surface Ni species formed on ZrO2-promoted catalysts might be responsible for its high activity and good resistance to Ni sintering.  相似文献   

8.
Catalysts of nano-sized nickel oxide particles based on flowerlike lanthanum oxide microspheres with high disperse were prepared to achieve simultaneous dehydrogenation of ethanol and water molecules on multi-active sites. XRD, SEM, 77K N2 adsorption were used to analyze and observe the catalysts’ structure, morphology and porosity. Catalytic parameters with respect to yield of H2, activity, selectivity towards gaseous products and stability with time-on-stream and time-on-off-stream were all determined. This special morphology NiO/La2O3 catalyst represented more than 1000 h time-on-stream stability test and 500 h time-on-off-stream stability test for hydrogen fuel production from ethanol steam reforming at 300 °C without any deactivation. During the 1000 h time-on-stream stability test, ethanol–water mixtures could be converted into H2, CO, and CH4 with average selectivity values of 57.0, 20.1, 19.6 and little CO2 of 3.2 mol%, respectively, and average ethanol conversion values of 96.7 mol%, with H2 yield of 1.61 mol H2/mol C2H5OH. During the 500 h time-on-off-stream stability test, ethanol–water mixtures could be converted into H2, CO, CH4 and CO2 with average selectivity values of 65.1, 17.3, 15.1 and 2.5 mol%, respectively, and average ethanol conversion values of 80.0 mol%. For the ethanol-H2 and petrolic hybrid vehicle (EH–HV), the combustion value is the most important factor. So, it was very suitable for the EH–HV application that the low temperature ethanol steam reforming products’ distribution was with high H2, CO, CH4 and very low CO2 selectivity over the special NiO/La2O3 flowerlike microspheres.  相似文献   

9.
Nanosized Ni3(Fe(CN)6)2(H2O) was prepared by a simple co-precipitation method. The electrochemical properties of the sample as the electrode material for supercapacitor were studied by cyclic voltammetry (CV), constant charge/discharge tests and electrochemical impedance spectroscopy (EIS). A specific capacitance of 574.7 F g−1 was obtained at the current density of 0.2 A g−1 in the potential range from 0.3 V to 0.6 V in 1 M KNO3 electrolyte. Approximately 87.46% of specific discharge capacitance was remained at the current density of 1.4 A g−1 after 1000 cycles.  相似文献   

10.
The aim of this study is to investigate the promotional effect of Ce on Ni/ZSM-5 catalysts in the CO2 reforming of CH4 reaction. The evaluation of the catalytic performances of the composite catalysts was conducted in a fixed-bed reactor at atmospheric pressure. The influencing factors, including temperature, Ni and Ce loadings, molar feed ratio of CO2/CH4, and time-on-stream (TOS), were investigated. The characteristics of the catalysts were checked with Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The reduction and the basic properties of the composite catalysts were elucidated by temperature-programmed reduction by H2 (H2-TPR) and temperature-programmed desorption of CO2 (CO2-TPD), respectively. The reactivity of deposited carbon was studied by sequential temperature-programmed surface reaction of CH4 (CH4-TPSR) and temperature-programmed oxidation using CO2 and O2 (CO2-TPO and O2-TPO). Results indicate that higher CH4 conversion, H2 selectivity, and desired H2/CO ratio for 5 wt% Ni & 5 wt% Ce/ZSM-5 could be achieved with CO2/CH4 feed ratio close to unity over the temperature range of 500–900 °C. Moreover, the addition of Ce could not only promote CH4 decomposition for H2 production but also the gasification of deposited carbon with CO2. The dispersion of Ni particles could be improved with Ce presence as well. A partial reduction of CeO2 to CeAlO3 was observed from XPS spectra over 5 wt% Ni & 5 wt% Ce/ZSM-5 after H2 reduction and 24 h CO2–CH4 reforming reaction. Benefiting from the introduction of 5 wt% Ce, the calculated apparent activation energies of CH4 and CO2 over the temperature range of 700–900 °C could be reduced by 30% and 40%, respectively.  相似文献   

11.
The objective of this study is to investigate the impact of syngas composition by varying the H2/CO ratio (1:3, 1:1, and 3:1 by volume), the CO2 dilution (0%–40%), and methane addition (0%–40%) on laminar flame speed. Thus, laminar flame speeds of premixed syngas–air mixtures were measured for different equivalence ratios (0.8–2.2) and inlet temperatures (295–450 K) using the Bunsen-burner method. It was found that laminar flame speed increases with increasing H2/CO ratio, while CO2 dilution or CH4 addition decreased it. The location of the maximum flame speed shifts to richer mixtures with decreasing H2/CO ratio, while it shifts to leaner mixtures with the addition of CH4 due to its inherent slower flame speed. The location of the maximum flame speed is also shifted towards leaner mixtures with the addition of CO2 due to the preponderance of the reduction of the adiabatic flame temperature with increasing dilution. Comparison between experimental and numerical results shows a better agreement using a modified mechanism derived from GRI-Mech 3.0. A correlation, based on the experimental results, is proposed to calculate the laminar flame speed over a wide range of equivalence ratios, inlet temperatures, and fuel content.  相似文献   

12.
A series of Y2O3-promoted NiO/SBA-15 (9 wt% Ni) catalysts (Ni:Y weight ratio = 9:0, 3:1, 3:2, 1:1) were prepared using a sol–gel method. The fresh as well as the catalysts used in CO2 reforming of methane were characterized using N2-physisorption, XRD, FT-IR, XPS, UV, HRTEM, H2-TPR, O2-TPD and TG techniques. The results indicate that upon Y2O3 promotion, the Ni nanoparticles are highly dispersed on the mesoporous walls of SBA-15 via strong interaction between metal ions and the HO–Si-groups of SBA-15. The catalytic performance of the catalysts were evaluated at 700 °C during CH4/CO2 reforming at a gas hourly space velocity of 24 L gcat−1 h−1(at 25 °C and 1 atm) and CH4/CO2molar ratio of 1. The presence of Y2O3 in NiO/SBA-15 results in enhancement of initial catalytic activity. It was observed that the 9 wt% Y–NiO/SBA-15 catalyst performs the best, exhibiting excellent catalytic activity, superior stability and low carbon deposition in a time on stream of 50 h.  相似文献   

13.
The effects of surface coating of Y(OH)3 on the electrochemical performance of spherical Ni(OH)2 were studied by cyclic voltammetry (CV) with soft-embedded electrode (SE-E). The coating was performed by chemical surface precipitation under different conditions. The structure, morphology, chemical composition and electrochemical properties of two different samples with surface coating of Y(OH)3 were characterized and compared. The results show that a two-step oxidation process exists in the oxidation procedure of spherical Ni(OH)2 corresponding to the formation of Ni(III) and Ni(IV), respectively. The conversion of Ni(III) to Ni(IV) is regarded as a side reaction in which Ni(IV) species is not stable. The presence of Y(OH)3 on the particle surface can restrain the side reactions, especially the formation of Ni(IV). The application of coated Ni(OH)2 to sealed Ni–MH batteries yielded a charge acceptance of about 88% at 60 °C. The results manifest that the high-temperature performance of Ni(OH)2 electrode is related to the distribution of the adding elements in surface oxide layer of Ni(OH)2, the sample with dense and porous coating surface, larger relative surface content and higher utilization ratio of yttrium is more effective.  相似文献   

14.
Alumina supported nickel (Ni/Al2O3), nickel–cobalt (Ni–Co/Al2O3) and cobalt (Co/Al2O3) catalysts containing 15% metal were synthesized, characterized and tested for the reforming of CH4 with CO2 and CH4 cracking reactions. In the Ni–Co/Al2O3 catalysts Ni–Co alloys were detected and the surface metal sites decreased with decrease in Ni:Co ratio. Turnover frequencies of CH4 were determined for both reactions. The initial turnover frequencies of reforming (TOFDRM) for Ni–Co/Al2O3 were greater than that for Ni/Al2O3, which suggested a higher activity of alloy sites. The initial turnover frequencies for cracking (TOFCRK) did not follow this trend. The highest average TOFDRM, H2:CO ratio and TOFCRK were observed for a catalyst containing a Ni:Co ratio of 3:1. This catalyst also had the maximum carbon deposited during reforming and produced the maximum reactive carbon during cracking. It appeared that carbon was an intermediate product of reforming and the best catalyst was able to most effectively crack CH4 and oxidize carbon to CO by CO2.  相似文献   

15.
We report the synthesis of a new hydrogen storage material with a composition of LiCa(NH2)3(BH3)2. The theoretical hydrogen capacity of LiCa(NH2)3(BH3)2 is 9.85 wt.%. It can be prepared by ball milling the mixture of calcium amidoborane (Ca(NH2BH3)2) and lithium amide (LiNH2) in a molar ratio of 1:1. The experimental results show that this material starts to release hydrogen at a temperature as low as ca. 50 °C, which is ca. 70 °C lower than that of pure Ca(NH2BH3)2 possibly resulting from the active interaction of NH2 in LiNH2 with BH3 in Ca(NH2BH3)2. ca. 4.1 equiv. or 6.8 wt.% hydrogen can be released at 300 °C. The dehydrogenation is a mildly exothermic process forming stable nitride products.  相似文献   

16.
The high-temperature charge acceptance of Ni-MH batteries has been improved through the addition of calcium fluoride to the pasted nickel hydroxide electrode made using spherical Co(OH)2-coated nickel hydroxide powder. The charge acceptance of the Ni-MH battery at 60 °C is over 95% at 1 C charge/discharge rates. The charge acceptance at 60 °C remains at over 90% through 10 cycles. The use of Co(OH)2-coated Ni(OH)2 plus a CaF2 addition to the positive electrode also significantly improved the high-temperature stability in terms of reduced gas evolution.  相似文献   

17.
We propose the inclusion of a novel In(OH)3:Zn2+ buffer layer for fabricating high-efficiency CIGS solar cells. This buffer layer was deposited using a solution consisting of ZnCl2, InCl3·4H2O, and thiourea. The In(OH)3:Zn2+ films showed high resistivities of 2.1×108 Ω cm and transmittance of above 95% in the visible range. We expected two effects due to this new buffer layer: first is the formation of a passivation layer on the CIGS surface and the second is Zn-doping into CIGS layer, resulting in the formation of a buried junction. A cell efficiency of 14.0% (Voc: 0.575 V, Jsc: 32.1 mA/cm2, FF: 0.758) was achieved by using an In(OH)3:Zn2+ buffer layer, without the light soaking effect.  相似文献   

18.
The effect of preparation method on the performance of Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol (EtOH) has been investigated. The first catalyst was prepared by a sol–gel (SG) method and for the second one the Al2O3 support was made by a solution combustion synthesis (SCS) route and then the metal was loaded by standard wet impregnation. The catalytic activity of these catalysts of different Ni loading was compared with a commercial Al2O3 supported Ni catalyst [CM (10%)] at different temperatures, pressures, feed flow rates, and feed concentrations. Based on the product distribution, the proposed reaction pathway is a mixture of dehydrogenation of EtOH to CH3CHO followed by C–C bond breaking to produce CO + CH4 and oxidation of CH3CHO to CH3COOH followed by decarbonylation to CO2 + CH4. CH4(C2H6 and C3H8) also can form via Fischer–Tropsch reactions of CO/CO2 with H2. The CH4 (C2H6 and C3H8) reacts to form hydrogen and carbon monoxide through steam reforming, while CO converts to CO2 mostly through the water–gas shift reaction (WGSR). SG catalysts showed poorer WGSR activity than the SCS catalysts. The activation energies for H2 and CO2 production were 153, 155 and 167 kJ/mol and 158, 160 and 169 kJ/mol for SCS (10%), SG (10%), and CM (10%) samples, respectively.  相似文献   

19.
Bioethanol was reformed in supercritical water (SCW) at 500 °C and 25 MPa on Ni/Al2O3 and Ni/CeZrO2/Al2O3 catalysts to produce high-pressure hydrogen. The results were compared with non-catalytic reactions. Under supercritical water and in a non-catalytic environment, ethanol was reformed to H2, CO2 and CH4 with small amounts of CO and C2 gas and liquid products. The presence of either Ni/Al2O3 or Ni/CeZrO2/Al2O3 promoted reactions of ethanol reforming, dehydrogenation and decomposition. Acetaldehyde produced from the decomposition of ethanol was completely decomposed into CH4 and CO, which underwent a further water-gas shift reaction in SCW. This led to great increases in ethanol conversion and H2 yield on the catalysts of more than 3-4 times than that of the non-catalytic condition. For the catalytic operation, adding small amounts of oxygen at oxygen to ethanol molar ratio of 0.06 into the feed improved ethanol conversion, at the expense of some H2 oxidized to water, resulting in a slightly lower H2 yield. The ceria-zirconia promoted catalyst was more active than the unpromoted catalyst. On the promoted catalyst, complete ethanol conversion was achieved and no coke formation was found. The ceria-zirconia promoter has important roles in improving the decomposition of acetaldehyde, the enhancement of the water-gas shift as well as the methanation reactions to give an extremely low CO yield and a tremendously high H2/CO ratio. The SCW environment for ethanol reforming caused the transformation of gamma-alumina towards the corundum phase of the alumina support in the Ni/Al2O3 catalyst, but this transformation was slowed down by the presence of the ceria-zirconia promoter.  相似文献   

20.
The objective of the study is to investigate the catalytic performance of Cr-promoted Ni/char in CO2 reforming of CH4 at 850 °C. The char obtained from the pyrolysis of a long-flame coal at 1000 °C was used as the support. The catalysts were prepared by incipient wetness impregnation methods with different metal precursor doping sequence. The characterization of the composite catalysts was evaluated by XRD, XPS, SEM-EDS, TEM, H2-TPR, CO2-TPD, CH4-TPSR, and CO2-TPO. The results indicate that the catalyst prepared by co-impregnation of Ni and Cr possess higher activity than those by sequential impregnation. The optimal loading of Cr on 5 wt% Ni/char is 7.8 wt‰. Moreover, the molar feed ratio of CH4/CO2 has a considerable effect on both the stability and the activity of Cr–Ni/char. The main effect of Cr is the great enhance of the adsorption to CO2. It is interesting that the conversions of CH4 and CO2 over Cr-promoted Ni/char and Ni/char decrease initially, following by a steady rise as the reaction proceeds with time-on-stream (TOS). In addition, cyclic tests were conducted and no distinct deterioration in the catalytic performance of the catalysts was observed. On the basis of the obtained results, nickel carbide was speculated to be the active species which was formed during the CO2 reforming of CH4 reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号