首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The present work focused on the investigation of the hydrogen generation through the ethanol steam reforming over the core–shell structured NixOy–, FexOy–, and CoxOy–Pd loaded Zeolite Y catalysts. The transmission electron microscopy (TEM) image of NixOy–Pd represented a very clear core–shell structure, but the other two catalysts, CoxOy– and FexOy–Pd, were irregular and non-uniform. The catalytic performances differed according to the added core metal and the support. The core–shell structured CoxOy–Pd/Zeolite Y provided a significantly higher reforming reactivity compared to the other catalysts. The H2 production was maximized to 98% over CoxOy–Pd(50.0 wt%)/Zeolite Y at the conditions of reaction temperature 600 °C, CH3CH2OH:H2O = 1:3, and GHSV (gas hourly space velocity) 8400 h−1. In the mechanism that was suggested in this work, the cobalt component played an important role in the partial oxidation and the CO activation for acetaldehyde and CO2 respectively, and eventually, cobalt increased the hydrogen yield and suppressed the CO generation.  相似文献   

2.
Materials of the perovskite structure and of the general formula La1−xSrxMnO3 (x = 0, 0.3, 0.7) are investigated as redox catalysts for the two-step steam reforming of methane towards the production of high purity hydrogen. During the activation step, methane is oxidized with lattice oxygen to carbon dioxide and carbon monoxide, while oxygen is withdrawn from the material until a maximum deficiency level which depends on the strontium content and the reaction temperature. During the reaction step water is splitted to gaseous hydrogen and lattice oxygen that fills the oxygen vacancies. It appeared that, after the achievement of a characteristic oxygen deficiency level, La1−xSrxMnO3 materials exhibit good activity for the water-splitting reaction. The activity is further found to be proportional to the oxygen vacancy concentration. At high activity levels, initial water conversions per 15 μmol pulse of up to 70% are achieved at 1000 °C. The cumulatively produced hydrogen during the water-splitting step, per injected water, increases with increasing strontium content, reaching a production of 60 μmol H2 per 500 μmol water passed over 200 mg La0.3Sr0.7MnO3 at 1273 K and no coke formation. The materials exhibit stable behavior after eight successive oxidation–reduction cycles. The relations between the redox behavior and the material defect chemistry are discussed. Finally the energy efficiency of the process, future prospects and ways for its optimization are discussed.  相似文献   

3.
Ti10V84−xFe6Zrx (x = 1, 2, 4, 6, 8) hydrogen storage alloys were prepared by induction melting with magnetic levitation, and the effects of Zr content on the microstructures and hydrogen storage properties have been investigated systematically. The results show that the alloy with x = 1 has a single V-based solid solution phase with BCC structure, while other alloys with x = 2–8 consist of a BCC main phase and a C14 type Laves secondary phase, and the abundance ratio of the secondary phase increases with increasing Zr content. As the Zr content in the alloy increases, the activation behavior is improved, but the hydrogen absorption and desorption capacities decrease gradually. For the alloy with the Zr content of x = 1, the best overall hydrogen storage properties are obtained.  相似文献   

4.
The nanocrystalline Mg2Ni-type electrode alloys with nominal compositions of Mg20Ni10−xCux (x = 0, 1, 2, 3, 4) were synthesized by the melt spinning technique. The microstructures of the as-cast and spun alloys were characterized by XRD, SEM and HRTEM. The electrochemical hydrogen storage performances were tested by an automatic galvanostatic system. The results show that all the as-spun alloys hold typical nanocrystalline structure instead of an amorphous phase. The melt spinning does not modify the major phase Mg2Ni, but it leads to the formation of crystal defects such as stacking faults, dislocations, sub-grain boundary and twin-grain boundary. The melt spinning significantly improves the electrochemical hydrogen storage capacity of the alloys, whereas it slightly impairs the electrochemical cycle stability of the alloys. The substitution of Cu for Ni significantly ameliorates the electrochemical hydrogen storage performances of the alloys, involving both the electrochemical hydrogen storage capacity and the electrochemical charging and discharging stability.  相似文献   

5.
In order to enhance the glass forming ability of the Mn2Ni-type electrode alloy, Ni in the Mg2Ni compound is partially substituted by Mn. The nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1−xMnx (x = 0, 0.1, 0.2, 0.3, 0.4) are fabricated by melt-spinning technique. The spun alloy ribbons with a continuous length, a thickness of about 30 μm and a width of about 25 mm are successfully obtained. The microstructures of the as-spun alloy ribbons are characterized by XRD, SEM and TEM. The electrochemical hydrogen storage characteristics of the as-spun alloy ribbons were tested by an automatic galvanostatic system. The electrochemical impedance spectra (EIS) are plotted by an electrochemical workstation (PARSTAT 2273). The hydrogen diffusion coefficients in the alloys are calculated by virtue of potential-step method. The results show that no amorphous structure is detected in the as-spun Mn-free alloy, whereas the as-spun alloys containing Mn display a nanocrystalline and amorphous structure. The amorphization degree of the alloy increases with rising spinning rate, suggesting that the substitution of Mn for Ni facilitates the glass formation in the Mg2Ni-type alloy. The substitution of Mn for Ni markedly improves the electrochemical hydrogen storage performances of the Mg2Ni-type alloy, enhancing both the discharge capacity and the electrochemical cycle stability. Furthermore, the high rate dischargeability (HRD), electrochemical impedance spectrum and potential-step measurements all indicate that the electrochemical kinetics of the alloy electrodes first increases then decreases with increasing amount of Mn substitution.  相似文献   

6.
Perovskite-type La1−xSrxNiyFe1−yO3−δ (x = 0.3, 0.4, 0.5, 0.6, y = 0.2; x = 0.3, y = 0.2, 0.3, 0.4) oxides have been synthesized and employed as cathodes for low-temperature solid oxide fuel cells (SOFCs) with composite electrolyte. The segregation of La2NiOδ is observed to increase with the increasing Sr2+ incorporation content according to X-ray diffraction (XRD) results. The as-prepared powders appear porous foam-like agglomeration with particle size less than 1 μm. Maximum power densities yield as high as 725 mW cm−2 and 671 mW cm−2 at 600 °C for fuel cells with the LSNF4628 and LSNF7337 composite cathodes. The maximum power densities continuously increase with the increasing Sr2+ content in LSNF cathodes, which can be mainly ascribed to the possible charge compensating mechanism. The maximum power densities first increase with the Ni ion incorporation content up to y = 0.3 due to the increased oxygen vacancy, ionic conductivity and oxygen permeability. Further increase in Ni ion content results in a further lowering of fuel cell performance, which can be explained by the association of oxygen vacancies and divalent B-site cations in the cathode.  相似文献   

7.
The morphological and electrical properties of yttrium (Y) and indium (In) doped barium cerate perovskites of the form BaIn0.3−xYxCe0.7O3−δ (with x = 0–0.3) prepared by a modified Pechini method were investigated as potential high temperature proton conductors with improved chemical stability and conductivity. The sinterability increased with the increase of In-doping, and the perovskite phase was found in the BaIn0.3−xYxCe0.7O3−δ solid solutions over the range 0 ≤ x ≤ 0.3. The conductivities decreased from x = 0.3 to 0 while the tolerance to wet CO2 improved for BaIn0.3−xYxCe0.7O3−δ samples with an increase of In-doping. BaIn0.1Y0.2Ce0.7O3−δ was found to have relatively high conductivity as well as acceptable wet CO2 stability.  相似文献   

8.
A cost and time effective process was used to prepare the solid solutions BaCexZr(0.9−x)Y0.1O(3−δ) (0 ≤ x ≤ 0.4). 98% dense samples were obtained by solid state reactive sintering at 1500 °C for 4 h, with the addition of 1 wt% of NiO to the quantity of synthesized/sintered compound. Scanning electron micrographs reveal polygonal grains of 1–5 microns, whose size increases from the compound with no cerium (BCZY09) to the samples containing cerium (BCZY18–BCZY45). The conductivity, measured in wet reducing atmosphere (9% H2 in N2, p(H2O) = 0.015 atm) by impedance spectroscopy, increases with the cerium content. Some samples have also been prepared using barium sulfate (BaSO4) as barium precursor (instead of barium carbonate BaCO3) due to its non toxicity. The corresponding samples (prepared at 1575 °C) showed similar properties as the ones prepared with barium carbonate. Furthermore, different geometries (rods, tubes, pellets) could be made.  相似文献   

9.
To develop a single stage water–gas shift reaction (WGS) catalyst for compact reformers, Pt/CeO2, Pt/ZrO2, and Pt/Ce(1−x)Zr(x)O2 catalysts have been applied for the target reaction. The CeO2/ZrO2 ratio was systematically varied to optimize Pt/Ce(1−x)Zr(x)O2 catalysts. Pt/CeO2 showed the highest turnover frequency (TOF) and the lowest activation energy (Ea) among the catalysts tested in this study. It has been found that the reduction property of the catalyst is more important than the dispersion for a single stage WGS. Pt/CeO2 catalyst also showed stable catalytic performance. Thus, Pt/CeO2 can be a promising catalyst for a single stage WGS for compact reformers.  相似文献   

10.
(Pr–Nd)1−ySryMnO3−δ (P-NSM, y = 0.2, 0.25, 0.3, 0.35) powders made from commercial Pr–Nd mixed oxide, as well as (Pr1−xNdx)0.7Sr0.3MnO3−δ (PN3SM, x = 0, 0.5, 0.7, 1) were synthesized by a glycine-nitrate process and characterized as cathode materials for intermediate temperature solid oxide fuel cell (IT-SOFC). XRD patterns showed the powders had formed pure perovskite phase after being calcined at 800 °C for 2 h. (Pr–Nd)0.7Sr0.3MnO3−δ (P-N3SM) achieved a high conductivity of 194 S cm−1 at 500 °C and showed a good chemical stability against YSZ at 1150 °C. And the thermal expansion coefficient of P-N3SM/YSZ cathode was 11.1 × 10−6 K−1, which well matched YSZ electrolyte film. The tubular SOFC with P-N3SM/YSZ cathode exhibited the maximum power densities of 415, 367, 327 and 282 mW cm−2 at 850, 800, 750 and 700 °C, respectively, which indicated P-N3SM was potentially applied in SOFC for low cost.  相似文献   

11.
A systematic study and evaluation were performed on the effect of scandium doping at the B site of Pr0.6Sr0.4Co0.2Fe0.8O3−δ (PSCF) on key material properties as cathode for intermediate temperature solid oxide fuel cells (IT-SOFC). The doped products Pr0.6Sr0.4(Co0.2Fe0.8)(1−x)ScxO3−δ (PSCFSx, x=0.0-0.2) retained perovskite structure confirmed by X-ray diffraction, and their particles were smaller than the non-doped materials as evidenced by TEM. The electrical conductivity (EC) of PSCFSx decreased with increasing Sc3+ content, but EC values were still larger than 100 S cm−1 in temperature range of 300-800 °C as x ≤ 0.1. The thermal expansion coefficients (TEC) of PSCFSx were observed to generally decrease with increasing x especially at lower temperature range of 50-600 °C. In addition, the AC impedance revealed better electrochemical performance of PSCFSx cathode as x ≤ 0.1 than that of the undoped sample PSCF. Therefore, PSCFSx (x ≤ 0.1) shows some potential as cathode electrode for IT-SOFC. The function of Sc3+ dopant was tentatively elucidated and discussed.  相似文献   

12.
In the present work, composite materials of the type (1–x)SrTi0.5Fe0.5O3–δxCe0.8(Sm0.8Sr0.2)0.2O2–δ (with х = 0, 0.25, 0.5, 0.75 and 1) are obtained by the two step solid state technique. Their transport properties are investigated in terms of their usage as mixed ionic-electronic conducting (MIEC) membrane materials for hydrogen production. It is found that, in reducing conditions the composites are characterized by mixed conductivity, which level is controlled by the electrical properties of the prevailing phase. Moreover, at 900 °C and pO2 = 10−18 atm, total conductivity, ambipolar conductivity and oxygen permeability of composites dramatically grow (each of about 500%), when the fluorite component content x increases from 0 to 1. High-conducting and strengthened material 0.5SrTi0.5Fe0.5O3–δ–0.5Ce0.8(Sm0.8Sr0.2)0.2O2–δ is chosen for making tube shaped membranes using the tape rolling method, which are successfully applied for hydrogen production in laboratory scale. The hydrogen flux reached 0.176 ml cm−2 min−1 for x = 1, T = 900 °C and emf = 10 mV.  相似文献   

13.
Transition metal doped La0.08Sr0.92M0.20Ti0.80O3−δ (M = Mn, Fe, and Co) perovskite oxides were synthesized by the Pechini method. The methane oxidation behavior and the polarization resistance of the solid oxide fuel cells (SOFCs) with the perovskite oxides as anode was subsequently measured as a function of operation temperature. Surface atomic concentrations of the perovskite oxides were evaluated using X-ray photoelectron spectroscopy (XPS) and their relationship to the catalytic activity were discussed with respect to the transition metal dopant. The complete oxidation of methane was predominant in the low-temperature region, while the partial oxidation of methane occurred at high temperatures. Fe- and Co-doped perovskites showed better catalytic activity for the methane oxidation reaction than Mn-doped powder. This phenomenon could be explained by the high atomic concentration with low oxidation states and the resulting high oxygen vacancy concentration in the Fe- and Co-doped perovskite powder samples.  相似文献   

14.
This article reports our investigation on H2 generation from visible light (λ ≥ 420 nm) photodecomposition of H2S by nanomaterial catalysts, α-Fe2O3 and its chemically modified Fe2−xGaxO3 (Ga substitution at x = 0.6, FeGaO3-I and x = 1.0, FeGaO3-II). Simple template-free hydrothermal technique was employed to synthesize the three photocatalysts. XRD study reveals rhombohedral nanocrystalline structure and FESEM shows nanospheres morphology for Fe2O3 and nanosticks/nanorods for both FeGaO3-I, and FeGaO3-II. In H2 generation, Fe2O3 and FeGaO3-II perform moderate and almost same activities in the fresh and used conditions (quantum yield, QY = 6.0–6.8% at 550 nm). Contrarily, fresh FeGaO3-I exhibits a greater activity (11.2% QY) and the activity is further enhanced (QY = 15.3%) on regeneration and reuse. The intricacy, as resolved by XRD and FESEM, appears to take place through morphology transformation. The present work, thus, successfully demonstrates H2 generation from H2S by nanostructured photocatalysts involving morphology dependent activity enhancement.  相似文献   

15.
Cubic perovskite oxygen permeation materials BaCo0.9−xFexNb0.1O3−δ (BCFN, x = 0.1–0.7) are prepared by the conventional solid state reaction process. The crystal structure development, structural stability, electrical conductivity and oxygen permeation flux are investigated. The introduction of iron makes the formation of cubic perovskite structure for BCFN materials much easier. BCFN exhibits a p-type semiconductor and obeys the thermally activated small polarons hopping mechanism. The electrical conductivity of BCFN increases with increasing temperature and decreases with the Fe-doping concentration. The incorporation of Fe decreases slightly the oxygen permeability of BCFN membranes, but enhances significantly the structure stability of the oxygen permeation membrane in reducing atmosphere. A high oxygen permeation flux of 1.7 ml cm−2 min−1 at 900 °C through 1 mm densified membrane under air/helium condition is obtained for the composition of BaCo0.6Fe0.3Nb0.1O3−δ.  相似文献   

16.
The structure and electrochemical characteristics of (La1−xDyx)0.8Mg0.2Ni3.4Al0.1 (x = 0–0.20) hydrogen storage alloys have been investigated. Dysprosium was adopted as a partial substitution element for lanthanum in order to improve electrochemical properties. The XRD, SEM and EDX results showed that the alloys were composed of (La, Mg)2Ni7, LaNi5 and (La, Mg)Ni2 phases. The introduction of Dy promoted the formation of (La, Mg)2Ni7 phase which possesses high hydrogen storage capacity, and controlling dysprosium content at 0.05 can obtain the maximum (La, Mg)2Ni7 phase abundance in the alloys. The maximum discharge capacity was heightened from 382.5 to 390.2 mAh/g, which was ascribed to (La, Mg)2Ni7 phase abundance increasing from 54.8% to a maximum (60.5%). Also, the biggest discharge capacity retention remained 82.7% after 100 cycles at discharge current density of 300 mA/g.  相似文献   

17.
Aluminum hydride (alane; AlH3) has been identified as a leading hydrogen storage material by the US Department of Energy. With a high gravimetric hydrogen capacity of 10.1 wt.%, and a hydrogen density of 1.48 g/cm3, AlH3 decomposes cleanly to its elements above 60 °C with no side reactions. This study explores in detail the thermodynamic and spectroscopic properties of AlH3; in particular the α, α′ and γ polymorphs, of which α′-AlH3 is reported for the first time, free from traces of other polymorphs or side products. Thermal analysis of α-, α′-, and γ-AlH3 has been conducted, using DSC and TGA methods, and the results obtained compared with each other and with literature data. All three polymorphs were investigated by 1H MAS-NMR spectroscopy for the first time, and their 27Al MAS-NMR spectra were also measured and compared with literature values. AlH3·nEt2O has also been studied by 1H and 27Al MAS-NMR spectroscopy and DSC and TGA methods, and an accurate decomposition pathway has been established for this adduct.  相似文献   

18.
CdxZn1−xO films have been deposited by sol–gel spin-coating method onto glass substrates. The Cd/Zn ratio in solution was changed from 0 to 1. Zinc acetate dehydrates, cadmium acetate dehydrates, 2-methoxyethanol and monoethanolamine were used as a starting material (zinc and cadmium), solvent and stabilizer, respectively. The crystal structure and orientation of the films were investigated by X-ray diffraction (XRD) patterns. XRD patterns show that the films are polycrystalline nature. As x varies from 0 to 1, it was observed that the crystal structure changed from wurtzite (ZnO) to cubic (CdO) structure. The optical properties of these films have been investigated by means of the optical transmittance and reflectance spectra. A significant change in optical absorption edge, optical band gap and optical constant with variation in composition was observed.  相似文献   

19.
Perovskite oxide Ba1.0Co0.7Fe0.2Nb0.1O3−δ has been reported as oxygen transport membrane and cathode material for solid oxide fuel cells (SOFCs). In this study, the effects of A-site cation deficiency and B-site iron doping concentration on the crystal structure, thermal expansion coefficient (TEC), electrical conductivity and electrochemical performance of Ba1−xCo0.9−yFeyNb0.1O3−δ (x = 0-0.15, y = 0-0.9) have been systematically evaluated. Ba1−xCo0.9−yFeyNb0.1O3−δ (x = 0-0.10, y = 0.2 and x = 0.10, y = 0.2-0.6) can be indexed to a cubic structure. Increased electrical conductivity and decreased cathode polarization resistance have been achieved by A-site deficiency. No obvious variation can be observed in TEC by A-site deficiency. The electrical conductivity and TEC of Ba0.9Co0.9−yFeyNb0.1O3−δ decrease while the cathode polarization resistance increases with the increase in iron doping concentration. The highest conductivity of 13.9 S cm−1 and the lowest cathode polarization resistance of 0.07 Ω cm2 have been achieved at 700 °C for Ba0.9Co0.7Fe0.2Nb0.1O3−δ. The composition Ba0.9Co0.3Fe0.6Nb0.1O3−δ shows the lowest TEC value of 13.2 × 10−6 °C−1 at 600 °C and can be a potential cathode material for SOFCs.  相似文献   

20.
The aim of this study was to develop La1−xBaxGa1−yMgyO3−δ (x = 0.03–0.1, y = 0.2–0.25) (LBGM) electrolytes for intermediate-temperature solid-oxide fuel cells (SOFCs); these electrolytes were synthesized via a solid-state reaction. In the study, the La1−xBaxGa1−yMgyO3−δ samples crystallized in an orthorhombic (Imma) structure, and a BaLaGa3O7 phase was detected for x ≥ 0.08 at a fixed y = 0.2. The solubility limit of the Ba ions increased with an increase in the Mg content in the matrix. Two active Raman bands at ca. 677 and 739 cm−1 were observed, and they were attributed to the oxygen vacancies. The La0.95Ba0.05Ga0.75Mg0.25O3−δ sample had a higher conductivity ca. 0.1 S/cm at 800 °C, and an activation energy of ca. 0.83–1.27 eV at 500–800 °C. The thermal expansion coefficient (TEC) of the LBGM samples at 200–800 °C was in the range of 10 × 10−6 to 14 × 10−6/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号