共查询到20条相似文献,搜索用时 15 毫秒
1.
Nelson A. Kelly Thomas L. GibsonDavid B. Ouwerkerk 《International Journal of Hydrogen Energy》2011,36(24):15803-15825
Increasing the utilization of electric drive systems including hybrid, battery, and fuel cell electric vehicles (FCEV) will reduce the usage of petroleum and the emission of air pollution by vehicles. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe emissions, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. Before FCEVs can be introduced in large numbers, a hydrogen-fueling infrastructure is needed. This report describes an early proof-of-concept for a distributed hydrogen fueling option in which renewably generated, high-pressure hydrogen is dispensed at an FCEV owner’s home. In an earlier report we described the design and initial characterization of a solar photovoltaic (PV) powered electrolyzer/storage/dispensing (ESD) system that was a proof-of-concept for a single FCEV home fueling system. In the present report we determined the efficiency and other operational characteristics of that PV-ESD system during testing over a 109-day period at the GM Proving Ground in Milford, MI, at a hydrogen output pressure of approximately 2000 psi (13.8 MPa). The high pressure was achieved without any mechanical compression via electrolysis. Over the study period the photovoltaic solar to electrical efficiency averaged 13.7%, the electrolyzer efficiency averaged 59%, and the system solar to hydrogen efficiency averaged 8.2% based on the hydrogen lower heating value. A well-documented model used to evaluate solar photovoltaic power systems was used to calculate the maximum power point values of the voltage, current, and power of our PV system in order to derive the coupling factor between the PV and ESD systems and to determine its behavior over the range of environmental conditions experienced during the study. The average coupling factor was near unity, indicating that the two systems remained coupled in an optimal fashion. Also, the system operated well over a wide range of meteorological conditions, and in particular it responded quickly to instantaneous changes in the solar irradiance (caused by clouds) with negligible effect on the overall efficiency. During the study up to 0.67 kg of high-pressure hydrogen was generated on a sunny day for fueling FCEV. Future generations of high-pressure electrolyzers, properly combined with solar PV systems, can offer a compact, efficient, and environmentally acceptable system for FCEV home fueling. 相似文献
2.
Currently, the hydrogen storage method used aboard fuel cell electric vehicles utilizes pressures up to 70 MPa. Attaining such high pressures requires mechanical gas compression or hydrogen liquefaction followed by heating to form a high-pressure gas, and these processes add to the cost and reduce the energy efficiency of a hydrogen fueling system. In previous work we have evaluated the use of high-pressure electrolysis, in which hydrogen is generated from water and the electrolyzer boosts the hydrogen pressure to values from 13 to 45 MPa. While electrolytic compression is a novel and energy efficient method to produce high-pressure hydrogen, it has several limitations at present and will require more development work. Another concept is to use hydrogen absorbing alloys that form metal hydrides, in combination with a heat engine (hot and cold reservoirs), to drive a cyclic process in which hydrogen gas is absorbed and desorbed to compress hydrogen. Furthermore, by using a thermally-driven compressor, the hot and cold reservoirs can be obtained using renewable energy such as sunlight for heating together with ambient air or water for cooling. In this work we evaluated the thermodynamics and kinetics of a prototype metal hydride hydrogen compressor (MHHC) built for us by a research group in China. The compressor utilized a hydrogen input pressure of approximately 14 MPa, and, operating between an initial temperature of approximately 300 K and a final temperature of 400 K, a pressure of approximately 41 MPa was attained. In a series of experiments with those conditions the average compression ratio for a single-stage compression was approximately three. In the initial compression cycles, up to 300 g of hydrogen was compressed for each 100 K temperature cycle. The enthalpy of the metallic-alloy-hydriding reaction was found to be approximately 20.5 kJ per mole of H2, determined by measuring the pressure composition isotherm at three temperatures and using a Van't Hoff plot. The thermodynamic efficiency of the compressor, as measured by the value of the compression work performed divided by the heat energy added and removed in one complete cycle, was determined via first and second law analyses. The Carnot efficiency was approximately 25%, the first law efficiency was approximately 3–5%, and the second law efficiency was approximately 12–20%, depending on the idealized compression cycle used to assign a value to the compression work, as well as other assumptions. These efficiencies compare favorably with values reported for other thermally-driven compressors. 相似文献
3.
Research on high-pressure water electrolyzers is under way worldwide as the economic production of hydrogen from renewable energy sources becomes more important. With increases in operating pressures, new safety issues have emerged, for which a reliable dynamic model of the electrolyzers is important for predicting their behavior. In this paper, a one-dimensional dynamic model of a high-pressure proton exchange membrane water electrolyzer is proposed. The model integrates various important physico-chemical phenomena inside the electrochemical cell that have been investigated individually into a dynamic model framework. Water transport, gas permeation, gas volume variation in anode/cathode channels, gas compressibility, and water vaporization are considered to formulate the model. Numerical procedures to handle and solve the model and the model performance for the prediction of steady and dynamic state behaviors are also presented. 相似文献
4.
Hydrogen from renewable energy sources is a clean and sustainable option as a fuel and is seen as a potential alternative to gasoline in the future. However, in the near future the use of hydrogen in internal combustion engines is possible at low fraction in mixture with compressed natural gas (HCNG fuel). 相似文献
5.
H. Tebibel A. Khellaf S. Menia I. Nouicer 《International Journal of Hydrogen Energy》2017,42(22):14950-14967
Hydrogen used as an energy carrier and chemical element can be produced by several processes such as gasification of coal and biomass, steam reforming of fossil fuel and electrolysis of water. Each of these methods has its own advantage and disadvantage. Electrolysis process is seen as the best option for quick hydrogen production. Hydrogen generation by methanol electrolysis process (MEP) gained much attention since it guarantees high purity gas and can be compatible with renewable energies. Furthermore, due to its very low theoretical potential (0.02 V), MEP can save more than 65% of electrical energy required to produce 1 kg of hydrogen compared to water electrolysis process (WEP). Electrolytic hydrogen production using solar photovoltaic (PV) energy is positioned to become as one of the preferred options due to the harmful environmental impacts of widely used methane steam reforming process and also since the prices of PV modules are more competitive.In this paper, hydrogen production by MEP using PV energy is investigated. A design of an off grid PV/battery/MethElec system is proposed. Mathematical models of each component of the system are presented. Semi-empirical relationship between hydrogen production rate and power consumption at 80 °C and 4 M concentration is developed. Optimal power and hydrogen management strategy (PHMS) is designed to achieve high system efficiency and safe operation. Case studies are carried out on two tilts of PV array: horizontal and tilted at 36° using measured meteorological data of solar irradiation and ambient temperature of Algiers site. Simulation results reveal great opportunities of hydrogen production using MEP compared to the WEP with 22.36 g/m2 d and 24.38 g/m2 d of hydrogen when using system with horizontal and tilted PV array position, respectively. 相似文献
6.
This paper compares the performance of three different solar based technologies for a stand-alone power supply (SAPS) using different methods to address the seasonal variability of solar insolation—(i) photovoltaic (PV) panels with battery storage; (ii) PV panels with electrolyser and hydrogen (H2) storage; and (iii) photoelectrolytic (PE) dissociation of water for H2 generation and storage. The system size is determined at three different Australian locations with greatly varying latitudes—Darwin (12°S), Melbourne (38°S) and Macquarie Island (55°S). While the PV/electrolyser system requires fewer PV panels compared to the PV/battery scenario due to the seasonal storage ability of H2, the final number of PV modules is only marginally less at the highest latitude due to the lower energy recovery efficiency of H2 compared to batteries. For the PE technology, an upper limit on the cost of such a system is obtained if it is to be competitive with the existing PV/battery technology. 相似文献
7.
8.
Sang-Youn Chae Jyotiprakash B. YadavKang-Jin Kim Oh-Shim Joo 《International Journal of Hydrogen Energy》2011,36(5):3347-3353
We studied the durability of the previously reported low mass loaded, highly efficient electrospray deposited Pt film as a cathode and Ni mesh as anode electrode in PV assisted water electrolysis system for 1000 h. This assembly showed no detectable decline in performance for initial 200 h, but thereafter it started to decline with time and showed 18% decline after 1000 h. For conclusion, we analyzed the electrode surfaces by different analyzing techniques. Results showed that Pt film was detaching from the surface and there was a deposition of passive layer of Fe2O3 on edge side of cathode surface. The iron derivative might be come from the corrosion of the stainless steel connectors that we used in PV assisted water electrolysis system. The etching and oxidation of anode surface was also observed but it might not be responsible for deterioration of performance. 相似文献
9.
A. Contreras R. Guirado T.N. Veziroglu 《International Journal of Hydrogen Energy》2007,32(18):4635-4640
The gradual exhaustion of natural resources, particularly energy sources, and the various problems involved in their life-cycle, makes it necessary to promote a renewably derived hydrogen economy, in which hydrogen is produced from clean sources.
In this paper, the control system for an installation for producing hydrogen via electrolysis using only a 250 kWp photovoltaic generator is presented. Computer simulation was used to design and confirm its correct performance.
The results obtained ensure the installation's high energy yield. 相似文献
10.
Renewable energy sources such as wind turbines and solar photovoltaic are energy sources that cannot generate continuous electric power. The seasonal storage of solar or wind energy in the form of hydrogen can provide the basis for a completely renewable energy system. In this way, water electrolysis is a convenient method for converting electrical energy into a chemical form. The power required for hydrogen generation can be supplied through a photovoltaic array. Hydrogen can be stored as metal hydrides and can be converted back into electricity using a fuel cell. The elements of these systems, i.e. the photovoltaic array, electrolyzer, fuel cell and hydrogen storage system in the form of metal hydrides, need a control and monitoring system for optimal operation. This work has been performed within a Research and Development contract on Hydrogen Production granted by Solar Iniciativas Tecnológicas, S.L. (SITEC), to the Politechnic University of Valencia and to the AIJU, and deals with the development of a system to control and monitor the operation parameters of an electrolyzer and a metal hydride storage system that allow to get a continuous production of hydrogen. 相似文献
11.
Pierre Belleville Francois Guillet Alessia Pons Jonathan Deseure Gérard Merlin Florence Druart Julien Ramousse Elisa Grindler 《International Journal of Hydrogen Energy》2018,43(32):14867-14875
Decoupling water electrolysis using mediator is an interesting way to produce pure hydrogen. The present work validates the proof of concept of decoupled electrolyser associated with a bioelectrochemical system (MFC-DES) through a redox flow mediator (potassium hexacyanoferrate (KHCF)). Low voltage (1 V) hydrogen production was achieved with a current density up to 25 mA cm?2. Regeneration of the mediator was performed by glucose fed microbial fuel cells. The oxidation rate of KHCF in the electrolyser is, at least, an order of magnitude higher than the reduction rate in MFC cascade fed system. MFC-DES is thus a promising set up as it desynchronizes limited microbial rate and hydrogen production, generate value from wastewater and reduce energetic cost of water electrolysis. 相似文献
12.
Djamila Ghribi Abdellah Khelifa Said Diaf Maïouf Belhamel 《International Journal of Hydrogen Energy》2013
Hydrogen fuel can be produced by using solar electric energy from photovoltaic (PV) modules for the electrolysis of water without emitting carbon dioxide or requiring fossil fuels. 相似文献
13.
With the help of the typical model of a water electrolysis hydrogen production system, which mainly includes the electrolysis cell, separator, and heat exchangers, three expressions of the system efficiency in literature are compared and evaluated, from which one reasonable expression of the efficiency is chosen and directly used to analyze the performance of a water electrolysis hydrogen production system under different operation conditions. Several new configurations of a water electrolysis system are put forward and the problem how to calculate the efficiencies of these configurations is solved. Moreover, a solid oxide steam electrolyzer system (SOSES) for hydrogen production is taken as an example to expound that the different configurations of a water electrolysis system should be adopted for different operation conditions. The results obtained here may provide some guidance for the optimum design and operation of water electrolysis systems for hydrogen production. 相似文献
14.
Bryan K. Boggs 《Journal of power sources》2009,192(2):573-581
On-board hydrogen storage and production via ammonia electrolysis was evaluated to determine whether the process was feasible using galvanostatic studies between an ammonia electrolytic cell (AEC) and a breathable proton exchange membrane fuel cell (PEMFC). Hydrogen-dense liquid ammonia stored at ambient temperature and pressure is an excellent source for hydrogen storage. This hydrogen is released from ammonia through electrolysis, which theoretically consumes 95% less energy than water electrolysis; 1.55 Wh g−1 H2 is required for ammonia electrolysis and 33 Wh g−1 H2 for water electrolysis. An ammonia electrolytic cell (AEC), comprised of carbon fiber paper (CFP) electrodes supported by Ti foil and deposited with Pt-Ir, was designed and constructed for electrolyzing an alkaline ammonia solution. Hydrogen from the cathode compartment of the AEC was fed to a polymer exchange membrane fuel cell (PEMFC). In terms of electric energy, input to the AEC was less than the output from the PEMFC yielding net electrical energies as high as 9.7 ± 1.1 Wh g−1 H2 while maintaining H2 production equivalent to consumption. 相似文献
15.
Andrea Mazzucco Martin Dornheim Michael Sloth Torben R. Jensen Jens Oluf Jensen Masoud Rokni 《International Journal of Hydrogen Energy》2014
This review presents recent developments for effective heat management systems to be integrated in metal hydride storage tanks, and investigates the performance improvements and limitations of each particular solution. High pressures and high temperatures metal hydrides can lead to different design considerations, which are discussed in the paper. Studies analyzing design procedures based upon different geometrical solutions and/or operation strategies are considered, and their related advantages are explained. Restrictions to the validity of particular results are also evaluated. 相似文献
16.
In order to achieve a hydrogen economy, developing widespread hydrogen supply systems are vitally important. A large number of technological options exist and are still in development for hydrogen production, storage, distribution…, which cause various pathways for supplying hydrogen. Besides the technical factors, there are other effective parameters such as cost, operability, reliability, environmental impacts, safety and social implications that should be considered when assessing the different pathways as optimal and viable long-term alternatives. To aid this decision-making process, we have developed a generic optimization-based model for the long-range energy planning and design of future hydrogen supply systems. By applying Linear Dynamic Programming techniques, the model is capable of identifying optimal investment strategies and integrated supply system configurations from the many alternatives. Also, the environmental impacts of hydrogen supply system can be evaluated through scenario analysis. The features and capabilities of the model are illustrated through application to Iran as a case study. 相似文献
17.
High-temperature steam electrolysis (HTSE) is a promising method for highly efficient large-scale hydrogen production. The HTSE process not only reduces the amount of thermodynamic electrical energy requirement but also decreases the polarization losses, which improves the overall efficiency of hydrogen production.In this paper, a two-dimensional simulation method of the efficiency of the HTSE system integrated with high-temperature gas-cooled nuclear reactor (HTGR), which changes two parameters simultaneously in a reasonable range while keeping one parameter constant, was presented. Compared with one-dimensional analysis method, the effects of electrical efficiency (ηel), electrolysis efficiency (ηes,), and thermal efficiency (ηth) on overall efficiency (ηoverall) were investigated more objectively and accurately. Moreover, the critical concepts of ηes and ηth were put forward originally, which were very important to determine the optimum electrolysis voltages and operation temperatures in the actual HTSE processes. The calculated critical value of ηes was ΔG(T)/ΔH(T) and the actual ηes should be higher than the theoretically calculated one in order to maintain the high hydrogen production efficiency of HTSE system. Also, it was very interesting to find that the critical ηes was the theoretical maximum efficiency in SOFC mode. Furthermore, the critical value of ηth was equal to the value of ηel, which means the overall efficiency decreases with the ηes increasing if the ηth in the actual HTSE process is less than the critical value of ηth. Therefore, it is very important to control the ηth higher than the critical value in the actual HTSE process to get high overall system efficiency. 相似文献
18.
Münür Sacit Herdem Siamak Farhad Ibrahim Dincer Feridun Hamdullahpur 《International Journal of Hydrogen Energy》2014
The performance of a clean energy system that combines the coal gasification and alkaline water electrolyzer concepts to produce hydrogen is evaluated through thermodynamic modeling and simulations. A parametric study is conducted to determine the effect of water ratio in coal slurry, gasifier temperature, effectiveness of carbon dioxide removal, and hydrogen recovery efficiency of the pressure swing adsorption unit on the system hydrogen production. The exergy efficiency and exergy destruction in each system component are also evaluated. The results reveal that the overall energy and exergy efficiencies of this system are ∼58% and ∼55%, respectively. The weight ratio of the hydrogen yielded to the coal fed to this system is ∼0.126. Although this system produces hydrogen from coal, the greenhouse gases emitted from this system are fairly low. 相似文献
19.
Design of ternary Al-Sn-Fe alloy for fast on-board hydrogen production, and its application to PEM fuel cell 总被引:1,自引:0,他引:1
KwangSup Eom MinJoong KimSeKwon Oh EunAe ChoHyukSang Kwon 《International Journal of Hydrogen Energy》2011,36(18):11825-11831
An Al-Sn-Fe alloy is designed to increase the hydrogen generation rate even in weak alkaline water through the effective removal of Al oxide. Al-1wt.%Sn-1wt.%Fe alloy exhibits the hydrogen generation rate about 6 times higher than pure Al and 1.6 times higher than Al-1wt.%Fe alloy. Increases in exchange current density of Al alloys are in good accordance with increases in hydrogen generation rate. The addition of Sn in Al-Fe alloy can increase the hydrolysis rate by accelerating the breakdown of passive film (Al(OH)3 and Al2O3) in an alkaline solution. Hence, the Al-1wt.%Sn-1wt%Fe alloy shows a much higher hydrogen generation rate than pure Al and Al-1wt.%Fe alloy in relatively weak alkaline water. In the hydrolysis of Al-1wt.%Sn-1wt%Fe, Fe accelerates the hydrogen production by inducing simultaneously both inter-granular and galvanic corrosion, whereas Sn increases the hydrogen generation rate by breaking the Al oxide down effectively. Based on the increase in the hydrogen generation rate of Al-1wt.%Fe and Al-1wt.%Sn-1wt%Fe alloys over pure Al, the contribution to the increase of Fe and Sn are calculated to be 63% and 27%, respectively. Because the same amount of power is obtained by PEMFC using 6 times less Al-Sn-Fe alloy than pure Al, the weight and volume of on-board hydrogen production reactor can be reduced significantly by alloying Al with a small amount of Fe and Sn. 相似文献
20.
Kaveh Edalati Junko Matsuda Akira Yanagida Etsuo Akiba Zenji Horita 《International Journal of Hydrogen Energy》2014
Intermetallics of TiFe were processed using three different routes: annealing, plastic deformation using groove rolling and severe plastic deformation using high-pressure torsion (HPT). Hydrogen absorption was less than 0.2 wt.% in the coarse-grained annealed sample because of difficult activation. The groove-rolled sample, with subgrain structure and high density of dislocations and cracks, absorbed 0.3, 1.0, 1.4 and 1.7 wt.% of hydrogen in the first, second, third and fourth hydrogenation cycles, respectively. The HPT-processed sample, containing nanograins, absorbed 1.7–2 wt.% of hydrogen in any hydrogenation cycles. Both samples activated by groove rolling and HPT were not deactivated by long time exposure to the air. No surface segregation was detected after groove rolling, while the HPT-processed sample exhibited surface segregation. The current study confirmed the significance of plastic deformation and formation of grain boundaries and cracks on activation for hydrogen storage. 相似文献