首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of fins on formaldehyde removal in annular photocatalytic reactors was theoretically, numerically and experimentally studied. The simulated and experimental results agreed well. It was found that mass transfer tends to be the bottleneck of formaldehyde removal in conventional annular photocatalytic oxidation (PCO) reactors. When using fins coated with titania in a PCO reactor, the reaction area is greatly increased and the convective mass transfer is, therefore, obviously enhanced. The reaction coefficient may, however, be reduced. On the whole, the formaldehyde removal performance in an annular PCO reactor can be obviously improved by adding fins to the reactor. This analysis is helpful for annular PCO reactor design, and for performance optimization.  相似文献   

2.
Volatile organic compounds (VOCs) are the major pollutants in indoor air, which significantly impact indoor air quality (IAQ). As a promising technique to remove VOCs, photocatalytic oxidation (PCO) takes the advantages of oxidation of a large range of VOCs with low energy consumption. In this study, the mass transports and reaction mechanism involved in the PCO process have been studied. In addition, the kinetic models of PCO on the different conditions of elementary reactions have been critically reviewed. Moreover, the factors that may affect the efficiency of PCO were interpreted based on the established fundamental mechanism of PCO. Some recommendations were made for future work to improve the efficiency of PCO system for building applications.  相似文献   

3.
The relationship between high chemical compound exposure and human health has been an important worldwide issue. High exposure to chemical compounds can make harmful health effect. One of the mostly risky groups to this high exposure to chemical compounds is the construction worker. In this study, their exposure level and self-reported Multiple Chemical Sensitivity were investigated. In the first part of this study, self-reported symptom surveys and personal six Volatile Organic Compounds (VOCs) exposure measurements were conducted with three categories of construction employment, including exterior workers, interior workers, and office workers. The job category with the greatest exposure to VOCs was the interior workers, followed by office workers, and then exterior workers. However, based on the self-reported symptom surveys, office workers demonstrated a relatively high risk for Multiple Chemical Sensitivity (MCS) among the three job categories. From these results, it was uncertain that whether this was characteristic of office workers in general, or only office workers in the construction business. To determine this, the same surveys and measurements were conducted with office workers outside the construction business. University students were also surveyed as a comparison group. The results determined that office workers outside the construction business meeting the operational criteria for MCS were similar to construction office workers. This similarity was not nearly so pronounced when the construction office workers were compared to the university students. High chemical exposure level to interior workers and high MCS symptom of office workers should be considered and improved for each job group's health.  相似文献   

4.
Indoor air quality of new apartment buildings, which is known to cause Sick Housing Syndrome, has become a major concern among apartment residents as well as construction companies in Korea. Recently, the Indoor Air Quality Management Act, a regulation that limits concentration levels of formaldehyde and five volatile organic compounds in new apartment buildings, has been implemented. In this study, the effects of ventilation and decomposing agents were investigated and compared, which could be used at the pre-occupancy stage as solutions to high VOCs concentration levels in new apartment buildings. Six housing units were investigated under different conditions to assess the extent of the improvement in indoor air quality. The results demonstrate that ventilation is an effective way to control indoor air pollution caused by VOCs emissions, and the effect of decomposing agents on improving indoor air quality depends on the types of VOCs.  相似文献   

5.
Mo J  Zhang Y  Yang R 《Indoor air》2005,15(4):291-300
A general model has been developed for analyzing the removal of volatile organic compounds (VOCs) by photocatalytic oxidation (PCO) reactors, taking into consideration of the photocatalytic (surface) reaction and the convective mass transfer coefficients including allowance for their spatial dependence. On this basis, a novel insight into VOC removal performance of PCO reactors is presented. The key parameter for evaluating PCO reactor VOC removal performance is the number of the mass transfer unit (NTU(m)), which is shown to be a simple linear product of three dimensionless parameters: the ratio of the reaction area to the cross-sectional area of the flow channel (A*), the Stanton number of mass transfer (St(m)), and the reaction effectiveness (eta). The A* represents the geometric and structural characteristic of a PCO reactor. The St(m) shows the synergistic degree of alignment between the fluid and mass flow fields, and reflects the convective mass transfer rate of the reactor. The eta, describes the relative intensity between the PCO reaction rate and the mass transfer rate. By using the relationship and the parameters, the influence of various factors on the VOC removal performance, the bottleneck for improving the performance and design of a PCO reactor can be determined. Three examples are used to illustrate the application of our proposed model. It is found that the VOC removal bottleneck is the reaction rate for honeycomb type reactor, while mass transfer rate for light-in-tube type reactor. With six fins the fractional conversion of a light-in-tube reactor increases about 70% relative to the one without any fins. PRACTICAL IMPLICATIONS: Indoor air quality problem caused by volatile organic compounds (VOCs) have annoyed people for many years. Photocatalytic oxidation (PCO) appears to be a promising technique for destroying VOCs in indoor air. With the model and the novel insight presented in this paper, the influence of various factors on the VOC removal performance can be determined. And the bottleneck for improving the performance of a PCO reactor can be easily identified. These are helpful for designing high performance PCO reactors and optimizing their operative performance.  相似文献   

6.
A weekly monitoring campaign of volatile organic compounds (VOC), with single sampling of 24 h, was carried out in non-residential indoor environments such as libraries, pharmacies, offices, gymnasiums, etc., in order to evaluate the VOC concentrations to which people are exposed. Moreover, an outdoor sample was coupled to each indoor site to point out the influence of indoor sources. They were sampled with Radiello diffusive samplers for thermal desorption and analyzed by GC-MS. As already described in other papers, the VOC levels of most of the indoor sites were higher than that observed in the corresponding outdoor sites. For example, some sites showed a level of pollution that is ten times higher than their corresponding outdoor site. The monitored environments that had higher concentrations of the investigated VOC were the pharmacies, a newspaper stand, a copy center, and the coffee shops. Analysis of the weekly average concentrations of each pollutant and the use of literature allowed pointing out some site-specific characteristics that singled out possible sources of VOC. These results were verified analyzing the indoor-outdoor ratio (I/O) too. Newspaper stands were characterized by very high concentrations of toluene and pharmacies were characterized by high concentrations of aromatic compounds. PRACTICAL IMPLICATIONS: Indoor air pollution caused by volatile organic compounds (VOC) might affect human health at home as well as in public and commercial buildings. The main VOC sources in indoor environments are human activities, personal care products, smoking, house cleaning products, building products, and outside pollution. To preserve human health it is necessary to evaluate the average concentrations of VOC to which people are exposed and to identify the main sources of indoor pollution by means of suitable indoor monitoring campaigns in several environments. These investigations allow pointing out the characteristic critical situations of some indoor environments or some other types of environments.  相似文献   

7.
An uncomfortable smell was reported by employees of an IT office (information technological office) in a medical center. This problem started two years ago when the office was refurbished. The objectives of this study are to characterize the indoor air quality of this complaint area in terms of chemical pollutants and odor characteristics, and identify possible sources of this foul smell. Carbonyl chemicals and volatile organic compounds (VOCs) were investigated in this study, since these two groups are associated with odors and health effects. Additionally, the odor was evaluated by odor assessors (non-smokers) who recorded odor characters that appeared in offices. By comparing chemical measurements between complaint and non-complaint areas, calculating odor indices, and correlating odor and chemical measurements, we got results showing that a higher correlation coefficient is found between odor presence frequencies and VOC concentrations. Further investigating found nonanal and decanal are possible chemicals for malodors. The concentration levels of these two chemicals in the complaint area are higher than those in the non-complaint areas and exceeding odor thresholds. Possible sources of these long-chain aldehydes are formed during the oxidation degradations of fatty acids like linoleic acid, linolenic acid and oleic acid which are ingredients for many building products like linoleum and surface coating. In order to mitigate this malodor problem, extra and effective ventilation flow rate should be provided to reduce the concentrations of odorous chemicals and the precursors for these odorous chemicals.  相似文献   

8.
Zhang LZ  Zhang XR  Miao QZ  Pei LX 《Indoor air》2012,22(4):321-330
Fresh air ventilation is central to indoor environmental control. Total heat exchangers can be key equipment for energy conservation in ventilation. Membranes have been used for total heat exchangers for more than a decade. Much effort has been spent to achieve water vapor permeability of various membranes; however, relatively little attention has been paid to the selectivity of moisture compared with volatile organic compounds (VOCs) through such membranes. In this investigation, the most commonly used membranes, both hydrophilic and hydrophobic ones, are tested for their permeability for moisture and five VOCs (acetic acid, formaldehyde, acetaldehyde, toluene, and ethane). The selectivity of moisture vs. VOCs in these membranes is then evaluated. With a solution-diffusion model, the solubility and diffusivity of moisture and VOCs in these membranes are calculated. The resulting data could provide some reference for future material selection. PRACTICAL IMPLICATIONS: Total heat exchangers are important equipment for fresh air ventilation with energy conservation. However, their implications for indoor air quality in terms of volatile organic compound permeation have not been known. The data in this article help us to clarify the impacts on indoor VOC levels of membrane-based heat exchangers. Guidelines for material selection can be obtained for future use total heat exchangers for building ventilation.  相似文献   

9.
The experiment presented in this report was performed in a simulated aircraft cabin to evaluate the air cleaning effects of two air purification devices that used photocatalytic oxidation (PCO) technology. Objective physical, chemical and physiological measurements and subjective human assessments were used for the evaluation. Comparisons were made between conditions with and without the PCO units installed in the re-circulated air system. Four groups of 17 subjects were exposed for 7 h to each test condition. Chemical analysis indicates that ethanol, isoprene and toluene were decomposed by oxidation in the PCO units tested. However, some intermediate products, such as formaldehyde and acetaldehyde, were detected. Physiological measurements did not show any significant effects of the two PCO units except that skin dryness was reduced by operating PCO unit 2. Both positive and negative effects of using PCO units on subjective assessments were observed after the first 3 1/4 hours of exposure. After 6 h of exposure, a positive effect of using either PCO unit on symptoms of dizziness and claustrophobia was observed.  相似文献   

10.
Development of a new photocatalytic oxidation air filter for aircraft cabin   总被引:1,自引:0,他引:1  
A new photocatalytic oxidation air filter (PCO unit) has been designed for aircraft cabin applications. The PCO unit is designed as a regenerable VOC removal system in order to improve the quality of the recirculated air entering the aircraft cabin. The PCO was designed to be a modular unit, with four UV lamps sandwiched between two interchangeable titanium dioxide coated panels. Performances of the PCO unit has been measured in a single pass mode test rig in order to show the ability of the unit to decrease the amount of VOCs (toluene, ethanol, and acetone) entering it (VOCs are fed separately), and in a multipass mode test rig in order to measure the ability of the unit to clean the air of an experimental room polluted with the same VOCs (fed separately). Triangular cell panels have been chosen instead of the wire mesh panels because they have higher efficiency. The efficiency of the PCO unit depends on the type of VOCs that challenges it, toluene being the most difficult one to oxidise. The efficiency of the PCO unit decreases when the air flow rate increases. The multipass mode test results show that the VOCs are oxidized but additional testing time would be necessary in order to show if they can be fully oxidized. The intermediate reaction products are mainly acetaldehyde and formaldehyde whose amount depends on the challenge VOC. The intermediate reaction products are also oxidized and additional testing time would be necessary in order to show if they can be fully oxidized. The development of this new photocatalytic air filter is still going on. PRACTICAL IMPLICATIONS: The VOC/odor removing adsorbers are available for only a small proportion of aircraft currently in service. The photocatalytic oxidation (PCO) technique has appeared to be a promising solution to odors problems met in aircraft. This article reports the test results of a new photocatalytic oxidation air filter (PCO unit) designed for aircraft cabin applications. The overall efficiency of the PCO unit is function of the compound (toluene, ethanol, and acetone) that challenges the unit and toluene appears to be the most difficult compound to oxidize. Test results have shown the influence of the design of the PCO unit, the air flow rate and the type of UV on the efficiency of the PCO unit. The results obtained in this study represent a first attempt on the way to design a filter for VOC removal in cabin aircraft applications. The PCO technique used by the tested prototype unit is able to partially oxidized the challenge VOCs but one has to be aware that some harmful intermediate reaction products (mainly formaldehyde and acetaldehyde) are produced during the oxidation process before being partially oxidized too.  相似文献   

11.
The indoor air quality (IAQ) was measured in newly built Korean apartments before and after occupancy in a survey of 158 residences in 24-apartment complexes nationwide. Factors that might affect pollutant concentration, such as temperature, humidity, housing size, and duration of occupancy, were analyzed in relation to the measured concentrations. Average pollutant levels were consistent with the Ministry of the Environment's recommended standards; however, pollutant levels in some apartments exceeded the current standards. We found that the concentrations of formaldehyde and toluene often exceeded the more stringent guidelines that will soon be enacted. Our results suggest that stronger countermeasures are therefore required to control these two chemicals. The results show that the pollution concentration was generally proportional to temperature and humidity, but that, in some cases, the concentration measurements were inversely proportional to these two factors, and in a few others the relationship between these factors was not clear. Indoor air pollution readings were highest in the 30-pyeong apartments, followed by 10-, and 20-pyeong residences. The pollutant concentrations decreased to about half of their initial levels after one year of occupancy, but the concentration of formaldehyde in indoor air persisted for a longer period. The duration of the apartment's occupancy affected indoor air pollutant concentrations more so than other factors such as temperature, humidity, and apartment size.  相似文献   

12.
This paper characterizes and compares emissions during heating of different dust samples relevant to the indoor environment. Characterization includes emission of volatile organic compounds when dust samples were heated to 150 and 250 degrees C (gas chromatograph-mass spectrometer), weight loss during heating to 450 degrees C (thermogravimetric analysis), and the number of particles emitted during heating towards 200 degrees C (condensation nucleus counting). Element analyses were performed for non-heated dust (inductively coupled plasma discharge instrument). Emissions of volatile organic compounds from heated dust from different sources were surprisingly similar. However, the temperature at which the emission of volatiles started varied with the dust source. For most of the samples studied, the emissions were considerable already at 150 degrees C, and increased in number of peaks and peak area at 250 degrees C. Particle emissions started around 70 degrees C regardless of the dust source. Particle emissions seemed to be affected by the content of organic material.  相似文献   

13.
Volatile organic compounds (VOCs) as a non-negligible aircraft cabin air quality (CAQ) factor influence the health and comfort of passengers and crew members. On-board measurements of carbonyls (short-chain (C1-C6)) and other volatile organic compounds (VOCs, long-chain (C6-C16)) with a total of 350 samples were conducted in 56 commercial airliner cabins covering 8 aircraft models in this study. The mean concentration for each individual carbonyl compound was between 0.3 and 8.3 μg/m3 (except for acrolein & acetone, average = 20.7 μg/m3) similar to the mean concentrations of other highly detected VOCs (long-chain (C6-C16), 97% of which ranged in 0–10 μg/m3) in aircraft cabins. Formaldehyde concentrations in flights were significantly lower than in residential buildings, where construction materials are known formaldehyde sources. Acetone is a VOC emitted by humans, and its concentration in flights was similar to that in other high-occupant density transportation vehicles. The variation of VOC concentrations in different flight phases of long-haul flights was the same as that of CO2 concentration except for the meal phase, which indicates the importance of cabin ventilation in diluting the gaseous contaminants, while the sustained and slow growth of the VOC concentrations during the cruising phase in short-haul flights indicated that the ventilation could not adequately dilute the emission of VOCs. For the different categories of VOCs, the mean concentration during the cruising phase of benzene series, aldehydes, alkanes, other VOCs (detection rate > 50%), and carbonyls in long-haul flights was 44.2 µg/m3, 17.9 µg/m3, 18.6 µg/m3, 31.5 µg/m3, and 20.4 µg/m3 lower than those in short-haul flights, respectively. Carbonyls and d-limonene showed a significant correlation with meal service (< 0.05). Unlike the newly decorated rooms or new vehicles, the inner materials were not the major emission sources in aircraft cabins. Practical Implications.
  • The on-board measurements of 56 flights enrich the VOC database of cabin environment, especially for carbonyls. The literature review of carbonyls in the past 20 years contributes to the understanding the current status of cabin air quality (CAQ).
  • The analysis of VOC concentration variation for different flight phases, flight duration, and aircraft age lays a foundation for exploring effective control methods, including ventilation and purification for cabin VOC pollution.
  • The enriched VOC data is helpful to explore the key VOCs of aircraft cabin environment and to evaluate the acute/chronic health exposure risk of pollutants for passengers and crew members.
  相似文献   

14.
A solvent extraction approach was developed and examined for extraction of targeted organophosphorus compounds as well as nerve agent simulants from painted wallboard (PWB). Painted wallboard was chosen as a substrate due to its presence as large surface area media in an indoor environment that is applicable to a chemical agent release scenario. Three different solvent systems were examined with a 1:1 methylene chloride: acetone mixture having the most robust and consistent extraction for four target organophosphorus compounds [dimethyl methyl phosphonate (DMMP), diethyl methyl phosphonate (DEMP), diethyl methyl phosphonothioate (DEMPT), and diisopropyl methyl phosphonate (DIMP)]. An average extraction efficiency of approximately 60% was obtained for these four compounds. The extraction approach was further demonstrated by extracting and detecting the chemical impurities present in neat DMMP that was vapor deposited onto painted wallboard tickets as a simulant to an agent release. Five chemical impurities that were present in DMMP – dimethyl phosphate, trimethyl ester phosphoric acid, ethyl methyl methylphosphonate, O,O,S-trimethyl ester phosphorothioic acid, and biphenyl were detected on the PWB and were utilized to determine the source/supplier of the DMMP.  相似文献   

15.
挥发性有机化合物对室内空气品质影响研究进展   总被引:25,自引:4,他引:25  
系统回顾了近年来一些国家对室内空气环境中挥发性有机化合物(VOC)研究的各个方面,包括VOC研究在室内空气品质研究中的地位,建筑物内VOC对人体健康的影响,VOC研究的实验方法、理论方法及主要研究结论,各国政府、学术团体采取的行动等。得出结论:与建筑科学、环境科学及人体健康相关的工作人员,如居住者、建筑业主、建筑科学家、环境科学家、心理学家和生理学家、建筑师与暖通空调设计人员、建筑和装饰材料生产商、供应商,都应重视VOC问题。  相似文献   

16.
Indoor air quality (IAQ) on ships is important for the passengers’ comfort and the crew’s work efficiency, despite ships not being as common as vehicles and airplanes. The builders and operators need to be aware of the importance and present status of IAQ, but sufficient data and information are not available. In this study, we measured the pollutant concentrations on two different kinds of newly launched ships: a passenger ship and a chemical cargo ship. Although higher than in the passenger ship, the concentrations of most volatile organic compounds (VOCs) and formaldehyde in the cargo ship were lower than the recommended standards and acceptable with a few exceptions. The high CO and CO2 concentrations in the kitchen, engine room, and engine control room were generally attributed to combustion sources. Overall, the IAQ of the cargo ship was worse than that of the passenger ship, and the concentrations of some pollutants surpassed the international criteria. For the passenger ship, the variation of IAQ was also investigated after 17 months. The observed data showed some differences in concentration variation according to the types of pollutants. To improve IAQ on ships, more data need to be collected and minimum requirements suggested.  相似文献   

17.
A single-blinded study was performed to analyze whether indoor environments with and without mold infestation differ significantly in microbial volatile organic compounds (MVOC) concentrations. Air sampling for MVOC was performed in 40 dwellings with evident mold damage and in 44 dwellings, where mold damage was excluded after a thorough investigation. The characteristics of the dwellings, climatic parameters, airborne particles and air exchange rates (AER) were recorded. The parameters mold status, characteristics of the interiors and measured climatic parameters were included in the multiple regression model. The results show no significant association between most of the analyzed MVOC and the mold status. Only the compounds 2-methyl-1-butanol and 1-octen-3-ol indicated a statistically significant, but weak association with the mold status. However, the concentrations of the so-called MVOC were mainly influenced by other indoor factors. 2-Methylfuran and 3-methylfuran, often used as main indicators for mold damage, had a highly significant correlation with the smoking status. These compounds were also significantly correlated with the humidity and the AER. The compounds 3-methyl-1-butanol, 2-hexanone, 3-heptanone and dimethyl disulfide were weakly correlated with the recorded parameters, the humidity being the strongest influencing factor. Only 2-methyl-1-butanol and 1-octen-3-ol showed a statistically significant association with the mold status; however, only a small portion (10% in this case) of the total variability could be explained by the predictor mold status; they do not qualify as indicator compounds, because such minor correlations lead to a too excessive part of incorrect classifications, meaning that the diagnostic sensitivity and specificity of these compounds are too low. PRACTICAL IMPLICATIONS: The assumption that mold infestations might be detected by microbial VOC emissions must be considered with great reservation. The major part of the total variability of the measured MVOC concentrations originates from not known influencing factors and/or from factors not directly associated with the mold status of the dwellings (confounders). More specific and sensitive markers for the assessment of the mold status should be found, if the screening for mold infestations should be performed by volatile organic compounds.  相似文献   

18.
There are many factors determining the concentration of volatile organic compounds (VOCs) in indoor air. On the basis of 601 population-based measurements we develop an explicit exposure model that includes factors, such as renovation, furniture, flat size, smoking, and education level of the occupants.As a novel method for the evaluation of concentrations of indoor air pollutants we use quantile regression, which has the advantages of robustness against non-Gaussian distributions (and outliers) and can adjust for unbalanced frequencies of observations. The applied bi- and multivariate quantile regressions provide (1) the VOC burden that is representative for the population of Leipzig, Germany, and (2) an inter-comparison of the effects of the studied factors and their levels.As a result, we find strong evidence for factors of general impact on most VOC components, such as the season, flooring, the type of the room, and the size of the apartment. Other impact factors are very specific to the VOC components. For example, wooden flooring (parquet) and new furniture increase the concentration of terpenes as well as the modifying factors high education and sampling in the child's room. Smokers ventilate their flats in an extent that in general reduces the VOC concentrations, except for benzene (contained in tobacco smoke), which is still higher in smoking than in non-smoking flats. Very often dampness is associated with an increased VOC burden in indoor air.An investigation of mixtures emphasises a high burden of co-occurring terpenes in very small and very large apartments.  相似文献   

19.
Dampness affects a substantial percentage of homes and is associated with increased risk of respiratory ailments; yet, the effects of dampness on indoor chemistry are largely unknown. We hypothesize that the presence of water‐soluble gases and their aqueous processing alters the chemical composition of indoor air and thereby affects inhalation and dermal exposures in damp homes. Herein, we use the existing literature and new measurements to examine the plausibility of this hypothesis, summarize existing evidence, and identify key knowledge gaps. While measurements of indoor volatile organic compounds (VOCs) are abundant, measurements of water‐soluble organic gases (WSOGs) are not. We found that concentrations of total WSOGs were, on average, 15 times higher inside homes than immediately outside (N = 13). We provide insights into WSOG compounds likely to be present indoors using peer‐reviewed literature and insights from atmospheric chemistry. Finally, we discuss types of aqueous chemistry that may occur on indoor surfaces and speculate how this chemistry could affect indoor exposures. Liquid water quantities, identities of water‐soluble compounds, the dominant chemistry, and fate of aqueous products are poorly understood. These limitations hamper our ability to determine the effects of aqueous indoor chemistry on dermal and inhalation exposures in damp homes.  相似文献   

20.
Photocatalysis is an emerging and promising technology for indoor air purification. This photocatalytic method is effective in the case of a higher pollutant concentration, but its wide application in indoor air purification is limited due to the low level of indoor air contaminants. In order to improve the removal of pollutants in indoor air, we evaluated the photocatalytic performance over the nanosized TiO2 particles immobilized on the surface of activated carbon (AC) filter for the removal of formaldehyde (HCHO). It is shown that the photocatalytic reaction rate increased because the AC could adsorb the pollutants from the diluted air stream to generate a high concentration of the pollutants on the catalyst surfaces. The photocatalytic reaction took place from the diffusion control process to the photocatalytic reaction control process with the rise in flow velocity. In the former process, the photocatalytic reaction rate increased, whereas in the later process photocatalytic reaction rate changed little with increasing flow velocity. The flow velocity was lower over the TiO2/AC catalyst than over the TiO2/glass catalyst when the photocatalytic reaction was switched from the diffusion control process to the photocatalytic reaction control process. It is also observed that the indoor low-concentration HCHO could be photocatalytically degraded over TiO2/AC, with the HCHO concentration in the product mixture falling into the standard range that is specified by the indoor air quality standard of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号