首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Possibility of hydrogen production from biogas using hot slag has been studied, in which decomposition rate of CO2CO2CH4CH4 in a packed bed of granulated slag was measured at constant flow-rate and pressure. The molten slag, discharged at high temperature over 1700 K from smelting industries such as steelmaking or municipal waste incineration. It has enough potential for replacing energy required for hydrogen production due to the catalytic steam reforming or carbon decomposition of hydrocarbon. However, heat recovery of hot slag has never been established. Therefore, the objective of this work is to generate hydrogen from methane using heated slag particles as catalyst, in which the effect of temperature on the hydrogen generation was mainly investigated at range from 973 to 1273 K. In the experiments a mixed gas of CH4CH4 and CO2CO2 was continuously introduced into the packed bed of hot slag at constant flow-rate and atmospheric pressure and then the outlet gas was monitored by gas chromatography. The results indicate that slag acted as not only thermal media but also good catalyst, for promoting decomposition. The product gases were mainly hydrogen and carbon monoxide with/without solid carbon deposition on the surface of slag, depending on the reaction temperature. Increasing temperature led to large hydrogen generation with decreasing un-reacted methane in the outlet gas, at when the largest methane conversion was about 96%. The results suggested a new energy-saving process of hydrogen production, in which the waste heat from molten slag can replace the energy required for hydrogen production, reducing carbon dioxide emission.  相似文献   

2.
This study analyzed how production technology advances and how economic structure reformation affects transition to a hydrogen economy in Taiwan before 2030. A model, called “Taiwan general equilibrium model-energy, for hydrogen (TAIGEM-EH)”, was the forecast tool used to consider steam reforming of natural gas, the biodegradation of biomass and water electrolysis using nuclear power or renewable energies of hydrogen production industries. Owing to increase in the prices of oil and concern for global warming effects, hydrogen will have a 10.3% share in 2030 when demands for hydrogen production could be met if strong technological progress in hydrogen production were made. With reformed economic structure and strong support to progress in production technologies, hydrogen's share can reach 22.1% in 2030 and become the dominating energy source from then onwards. In the four scenarios studied, including developing country with three levels of effort and developed country with strong effort, the biohydrogen production industry can become a main supplier of hydrogen in the market if its technological progress can be competitive to other CO2CO2-free alternatives.  相似文献   

3.
Hydrogen production by water splitting with MnFe2O4/Na2CO3MnFe2O4/Na2CO3 system was studied at 973 K. An intermediate phase, resulting from decarbonatation of MnFe2O4/Na2CO3MnFe2O4/Na2CO3 mixture in inert atmosphere, proved to be effective in hydrogen reduction from water with stoichiometric yield. The presence of a highly reactive intermediate phase suggests the feasibility of a high efficiency, three-step, thermochemical cycle for hydrogen production. In fact, the possibility of obtaining CO2CO2 separately from the gases mixture dramatically enhances process efficiency.  相似文献   

4.
Diesel engines are the most trusted power sources in the transportation industry. They intake air and emit, among others, the pollutants NOXNOX and particulate matter. Continuous efforts and tests have tried to reduce fuel consumption and exhaust emissions of internal combustion engines. Alternative fuels are key to meeting upcoming stringent emission norms. We study hydrogen as an air-enrichment medium with diesel as an ignition source in a stationary diesel engine system to improve engine performance and reduce emissions. Stationary engines can be operated with less fuel than neat diesel operations, resulting in lower smoke levels and particulate emissions. Hydrogen (H2)(H2)-enriched air systems in diesel engines enable the realization of higher brake thermal efficiency, resulting in lower specific energy consumption (SEC). NOXNOX emissions are reduced from 2762 to 515 ppm with 90% hydrogen enrichment at 70% engine load. At full load, NOXNOX emission marginally increases compared to diesel operation, while both smoke and particulate matter are reduced by about 50%. The brake thermal efficiency increases from 22.78% to 27.9% with 30% hydrogen enrichment. Thus, using hydrogen-enriched air in a diesel engine produces less pollution and better performance.  相似文献   

5.
The addition of hydrogen to the natural gas feedstocks of midsize (30–150 MW) gas turbines was analyzed as a method of reducing nitrogen oxides (NOx)(NOx) and CO2CO2 emissions. In particular, the costs of hydrogen addition were evaluated against the combined costs for other current NOxNOx and CO2CO2 emissions control technologies for both existing and new systems to determine its benefits and market feasibility. Markets for NOxNOx emissions credits currently exist in California and the Northeast States and are expected to grow. Although regulations are not currently in place in the United States, several other countries have implemented carbon tax and carbon credit programs. The analysis thus assumes that the United States adopts future legislation similar to these programs. Therefore, potential sale of emissions credits for volunteer retrofits was also included in the study. It was found that hydrogen addition is a competitive alternative to traditional emissions abatement techniques under certain conditions. The existence of carbon credits shifts the system economics in favor of hydrogen addition.  相似文献   

6.
In the present paper, the performance and emission characteristics of a conventional four cylinder spark ignition (SI) engine operated on hydrogen and gasoline are investigated experimentally. The compressed hydrogen at 20  MPa has been introduced to the engine adopted to operate on gaseous hydrogen by external mixing. Two regulators have been used to drop the pressure first to 300 kPa, then to atmospheric pressure. The variations of torque, power, brake thermal efficiency, brake mean effective pressure, exhaust gas temperature, and emissions of NOxNOx, CO, CO2CO2, HC, and O2O2 versus engine speed are compared for a carbureted SI engine operating on gasoline and hydrogen. Energy analysis also has studied for comparison purpose. The test results have been demonstrated that power loss occurs at low speed hydrogen operation whereas high speed characteristics compete well with gasoline operation. Fast burning characteristics of hydrogen have permitted high speed engine operation. Less heat loss has occurred for hydrogen than gasoline. NOxNOx emission of hydrogen fuelled engine is about 10 times lower than gasoline fuelled engine. Finally, both first and second law efficiencies have improved with hydrogen fuelled engine compared to gasoline engine. It has been proved that hydrogen is a very good candidate as an engine fuel. The obtained data are also very useful for operational changes needed to optimize the hydrogen fueled SI engine design.  相似文献   

7.
Anaerobic hydrogen production from organic wastewater, an emerging biotechnology to generate clean energy resources from wastewater treatment, is critical for environmental and energy sustainability. In this study, hydrogen production, biomass growth and organic substrate degradation were comprehensively examined at different levels of two critical parameters (chemical oxygen demand (COD) and pH). Hydrogen yields had a reverse correlation with COD concentrations. The highest specific hydrogen yield (SHY) of 2.1 mole H2/mole glucose was achieved at the lowest COD of 1 g/L and decreased to 0.7 mole H2/mole glucose at the highest COD of 20 g/L. The pH of 5.5–6.0 was optimal for hydrogen production with the SHY of 1.6 mole H2/mole glucose, whereas the acidic pH (4.5) and neutral pH (6.0–7.0) lowered the hydrogen yields. Under all operational conditions, acetate and butyrate were the main components in the liquid fermentation products. Additionally, a comprehensive kinetic analysis of biomass growth, substrate degradation and hydrogen production was performed. The maximum rates of microbial growth (μm) and substrate utilization (Rsu) were 0.03 g biomass/g biomass/day and 0.25 g glucose/g biomass/day, respectively. The optimum pH for the rate of hydrogen production (RH2RH2) and SHY were 5.89 and 5.74 respectively. Based on the kinetic analysis, the highest RH2RH2 and SHY for batch-mode anaerobic hydrogen production systems were projected to be 13.7 mL/h and 2.32 mole H2/mole glucose.  相似文献   

8.
Alumina supported Pt group metal monolithic catalysts were investigated for selective oxidation of CO in hydrogen-rich methanol reforming gas for proton exchange membrane fuel cell (PEMFC) applications. The results are described and discussed in the present paper and show that Pt/γAl2O3Pt/γAl2O3 was the most promising candidate to selectively oxidize CO from an amount of about 1 vol% to less than 100 ppm. We have investigated the effect of the O2 to CO feed ratio, the feed concentration of CO, the presence of H2O and/or CO2, and the space velocity on the activity, selectivity and stability of Pt/Al2O3 monolithic catalysts. Afterwards, the Pt/Al2O3 catalyst was scaled up and applied in 5 kW hydrogen producing systems based on methanol steam reforming and autothermal reforming. The hydrogen produced was then used as fuel for an integrated PEMFC.  相似文献   

9.
Interaction of hydrogen with a series of cerium nickel and zirconium (or aluminium) mixed oxides CeM0.5NixOyCeM0.5NixOy (M=ZrM=Zr or Al, 0?x?30?x?3) has been studied in the 50–800 °C temperature range. Hydrogenation of 2-methyl-1,3-diene (isoprene) under helium flow in the absence of gaseous hydrogen is used to reveal and titrate reactive hydrogen species present in the solid previously treated under H2H2 at various temperatures. The CeM0.5NixOyCeM0.5NixOy mixed oxides are large catalytic hydrogen reservoirs and among the solids studied, the highest amount of hydrogen (about 10 wt%, 540 g/L) is stored in CeZr0.5Ni1OyCeZr0.5Ni1Oy pretreated in H2H2 at about 200 °C. Compared to the binary mixed oxides CeNixOyCeNixOy, the presence of M allows to increase the hydrogen storage and give a better stability to the system, in particular, with temperature. Different physico-chemical techniques (TPR, TGA …) have been used to characterize the solids studied.  相似文献   

10.
In this study, effects on a spark ignition engine of mixtures of hydrogen and methane have been experimentally considered. This article presents the results of a four-cylinder engine test with mixtures of hydrogen in methane of 0, 10, 20 and 30% by volume. Experiments have been made varying the equivalence ratio. Equivalence ratios have been selected from 0.6 to 1.2. Each fuel has been investigated at 2000 rpm and constant load conditions. The result shows that NO emissions increase, HC, CO and CO2CO2 emission values decrease and brake thermal efficiency (BTE) values increase with increasing hydrogen percentage.  相似文献   

11.
Total thermal efficiency of a new open-loop SI thermochemical cycle for the production of hydrogen, sulfuric acid and electric power was investigated. The new system without CO2CO2 emission is composed of sulfuric acid industry process which provides the chemical reactant SO2SO2 and heat, electric energy demands of the system and SI open-loop cycle separated into the Bunsen reaction system, the HIxHIx system and the H2SO4H2SO4 concentration system. The selection of SI cycle to run in an open-loop fashion for China is tied-up with two important facts: (1) sulfur iron ore as SO2SO2 source is inexpensive and abundantly available; (2) the product sulfuric acid, in addition to hydrogen, is valuable and marketable. The mass and heat balance of the process were calculated with the optimized conditions. Thermal efficiency for hydrogen production was 66.3% with ideal operating conditions of the EED cell and heat exchangers in the case of generating electric power without waste heat and was 70.9% in the case of high performance waste heat recovery.  相似文献   

12.
13.
A plant concept for hydrogen production from waste gasification coupled with cement manufacturing is presented. Hot precalcined cement meal, from the operating cement process, is used as heat carrier to provide energy required by the parallel arranged gasifier. The amount of CaO present in the cement meal operates simultaneously as an effective in situ CO2CO2-sorbent. First, a practical case study was devised to be able to perform simulations for estimation of expected hydrogen yield. The influence of different operation parameters of the gasifier and the hydrogen separation unit (steam-to-fuel ratio, pyrolysis temperature, PSA efficiency) was studied based on chemical equilibrium calculations. The simulation results indicate, that the coupling provides advantages for both processes. The production of a hydrogen-rich gas via thermal gasification benefits from the continuously available fresh CaO, which improves fuel conversion reactions and captures CO2CO2 in situ. High-calorific streams from gasification process remaining after hydrogen separation may substitute fossil fuels needed for cement process. For a steam/fuel ratio of 0.3 and a PSA efficiency of 0.7, the calculated hydrogen energy yield is 46% of fuel energy input.  相似文献   

14.
Hydrogen permeation through a palladium membrane has been measured in the presence of several gases, such as CO, N2N2, CO2CO2, and Ar, both in the feed side and in the shell side of the (membrane) module. It has been found that CO molecules, remarkably inhibit hydrogen permeation. In particular, in the presence of carbon monoxide the permeation decreases with two different slopes: (I) for low CO concentrations, the hydrogen permeation decreases quickly (surface effects), whereas (II) for higher ones it decreases smoothly (dilute effect). Permeation of hydrogen, in the presence of the other gases, i.e. N2N2, CO2CO2 and Ar, always decreases with the same slope (dilute effect). In order to describe the CO inhibition, a theoretical investigation has been proposed. In particular, the framework of the Density Functional Theory has been used. CO and N2N2 Density Functional full optimisations on palladium clusters show that CO and N2N2 molecules present two minima on the cluster surfaces with bond lengths of 2.0 and 3.8 Å, respectively. The CO minima are much stable than N2N2 minima, resulting in a surface effect on the hydrogen permeation through the membrane.  相似文献   

15.
16.
17.
Industrial gas turbines fuelled by fossil fuels have been used widely in power generation and combined heat and power for many years. However they have to meet severe NOxNOx, CO and CO2CO2 (greenhouse effect) emissions legislation in many countries. This paper reports a study on injection of small quantities of hydrogen in a hydrocarbon fuelled burner like additionally fuel to reduce the pollutants emissions. Hydrogen is injected in the primary zone, premixed with the air. Using this injection together lean primary zone, it is possible to reduce the NOxNOx level while CO an HC levels remains approximately constant.  相似文献   

18.
The Westinghouse sulfur process decomposes water into hydrogen and oxygen in several steps. This process requires a high-temperature thermal source, which could ideally be a fourth-generation nuclear reactor for recycling compounds. The process consists of producing hydrogen in a specific electrolyzer where protons are reduced at the cathode while an oxidation reaction, in which sulfur dioxide forms sulfuric acid, takes place in the anode compartment. This type of reaction enables mass hydrogen production at a very low cell voltage because the thermodynamic oxidation potential of SO2/H2SO4SO2/H2SO4 is 0.17 V, compared with 1.23 V for the common electrolysis of water by H2O/O2H2O/O2 oxidation. This article describes the electrical/thermal coupling of an individual filter press electrolysis cell for the preliminary design of a future test pilot. Solving coupled equations describing heat transfer and electrokinetics in the presence of forced convective flow of a two-phase electrolyte allows charge and heat transfer to be predicted for different configurations.  相似文献   

19.
Experimental and numerical study on the effect of pressure and equivalence ratio on the ignition delay times of the DME/H2/O2 mixtures diluted in argon were conducted using a shock tube and CHEMKIN II package at equivalence ratios of 0.5–2.0, pressures of 1.2–10 atm and hydrogen fractions of 0–100%. It was found that the measured ignition delay times of the DME/H2 mixtures demonstrate three ignition regimes. For the DME/H2 mixture at XH2XH2 ≤80%, the ignition is controlled by the DME chemistry and ignition delay times present a typical Arrhenius pressure dependence and weak equivalence ratio dependence. For the DME/H2 mixture at 80% < XH2XH2 < 98%, the ignition is controlled by the combined chemistries of DME and hydrogen, and the ignition delay times give higher ignition activation energy at higher pressures and a typical Arrhenius equivalence ratio dependence. However, for the DME/H2 mixture at XH2XH2≥98%, the ignition is controlled by the hydrogen chemistry and ignition delay time shows complex pressure dependence and weak equivalence ratio dependence. Comparison of the measurements of neat DME and neat hydrogen with the calculations using three generally accepted mechanisms, NUIG Aramco Mech 1.3 [1], LLNL DME Mech 2, 3 and 4 and Princeton-Zhao Mech [5], shows that NUIG Aramco Mech 1.3 gives the best predictions and can well capture the pressure and equivalence ratio dependence at various hydrogen fractions. The sensitivity and normalized H-radicals consumption analysis were performed using NUIG Aramco Mech 1.3 and the key reactions that control the ignition characteristics of DME/H2 mixtures were revealed. Further chemical kinetic analysis was made to interpret the ignition delay time dependence on pressure and equivalence ratio at varied hydrogen fractions.  相似文献   

20.
Indirect partial oxidation, or oxidative steam reforming, tests of a bimetallic Pt–Ni catalyst supported on δδ-alumina were conducted in propane–n  -butane mixtures (LPG) used as feed. H2H2 production activity and H2/COH2/CO selectivity were investigated in response to different S/C, C/O2C/O2 and W/F ratios. It was confirmed that higher steam content in the reactant stream increases both the activity and the H2/COH2/CO selectivity of the process. Low residence times created a positive impact on catalyst activity not only for hydrogen but also for carbon monoxide production due to the increased amount of fresh hydrocarbon in the feed stream. Hence, the highest selectivity level was obtained at intermediate residence times. The response of the system to C/O2C/O2 ratio was found to depend on the available steam content due to the complex nature of IPOX. The Pt–Ni catalyst was very prone to catalyst deactivation at low S/C ratios accompanied by high C/O2C/O2 ratios, but this problem was not encountered at high S/C ratios. A comparison of catalyst performance for different propane-to-n-butane ratios in the LPG feed indicated that the Pt–Ni catalyst has slightly better activity and selectivity at higher n-butane contents at the expense of becoming more sensitive to coke deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号