首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Global warming due to CO2 emissions has led to the projection of hydrogen as an important fuel for future. A lot of research has been going on to design combustion appliances for hydrogen as fuel. This has necessitated fundamental research on combustion characteristics of hydrogen fuel. In this work, a combination of experiments and computational simulations was employed to study the effects of diluents (CO2, N2, and Ar) on the laminar burning velocity of premixed hydrogen/oxygen flames using the heat flux method. The experiments were conducted to measure laminar burning velocity for a range of equivalence ratios at atmospheric pressure and temperature (300 K) with reactant mixtures containing varying concentrations of CO2, N2, and Ar as diluents. Measured burning velocities were compared with computed results obtained from one-dimensional laminar premixed flame code PREMIX with detailed chemical kinetics and good agreement was obtained. The effectiveness of diluents in reduction of laminar burning velocity for a given diluent concentration is in the increasing order of argon, nitrogen, carbon dioxide. This may be due to increased capabilities either to quench the reaction zone by increased specific heat or due to reduced transport rates. The lean and stoichiometric H2/O2/CO2 flames with 65% CO2 dilution exhibited cellular flame structures. Detailed three-dimensional simulation was performed to understand lean H2/O2/CO2 cellular flame structure and cell count from computed flame matched well with the experimental cellular flame.  相似文献   

2.
Oxidative steam reforming of ethanol at low oxygen to ethanol ratios was investigated over nickel catalysts on Al2O3 supports that were either unpromoted or promoted with CeO2, ZrO2 and CeO2–ZrO2. The promoted catalysts showed greater activity and a higher hydrogen yield than the unpromoted catalyst. The characterization of the Ni-based catalysts promoted with CeO2 and/or ZrO2 showed that the variations induced in the Al2O3 by the addition of CeO2 and/or ZrO2 alter the catalyst's properties by enhancing Ni dispersion and reducing Ni particle size. The promoters, especially CeO2–ZrO2, improved catalytic activity by increasing the H2 yield and the CO2/CO and the H2/CO values while decreasing coke formation. This results from the addition of ZrO2 into CeO2. This promoter highlights the advantages of oxygen storage capacity and of mobile oxygen vacancies that increase the number of surface oxygen species. The addition of oxygen facilitates the reaction by regenerating the surface oxygenation of the promoters and by oxidizing surface carbon species and carbon-containing products.  相似文献   

3.
A 2LiBH4–MgH2–MoS2 composite was prepared by solid-state ball milling, and the effects of MoS2 as an additive on the hydrogen storage properties of 2LiBH4–MgH2 system together with the corresponding mechanism were investigated. As shown in the TG–DSC and MS results, with the addition of 20 wt.% of MoS2, the onset dehydrogenation temperature is reduced to 206 °C, which is 113 °C lower than that of the pristine 2LiBH4–MgH2 system. Meanwhile, the total dehydrogenation amount can be increased from 9.26 wt.% to 10.47 wt.%, and no gas impurities such as B2H6 and H2S are released. Furthermore, MoS2 improves the dehydrogenation kinetics, and lowers the activation energy (Ea) 34.49 kJ mol−1 of the dehydrogenation reaction between Mg and LiBH4 to a value lower than that of the pristine 2LiBH4–MgH2 sample. According to the XRD test, Li2S and MoB2 are formed by the reaction between LiBH4 and MoS2, which act as catalysts and are responsible for the improved hydrogen storage properties of the 2LiBH4–MgH2 system.  相似文献   

4.
The laminar burning velocities of H2–air mixtures diluted with N2 or CO2 gas at high temperatures were obtained from planar flames observed in externally heated diverging channels. Experiments were conducted for an equivalence ratio range of 0.8–1.3 and temperature range of 350–600 K with various dilution rates. In addition, computational predictions for burning velocities and their comparison with experimental results and detailed flame structures have been presented. Sensitivity analysis was carried out to identify important reactions and their contribution to the laminar burning velocity. The computational predictions are in reasonably good agreement with the present experimental data (especially for N2 dilution case). The burning velocity maxima was observed for slightly rich mixtures and this maxima was found to shift to higher equivalence ratios (Ф) with a decrease in the dilution. The effect of CO2 dilution was more profound than N2 dilution in reducing the burning velocity of mixtures at higher temperatures.  相似文献   

5.
An innovative, nanostructured composite, anode electrocatalyst, material has been developed for the electrolytic splitting of (100%) H2S feed content gas operating at 135 kPa and 150 °C. A new class of anode electrocatalyst with general composition, RuO2–CoS2 has shown great stability and desired properties at typical operating conditions. This configuration showed stable electrochemical operation over the period of 24 h and also exhibited a maximum current density of (0.019 A/cm2). The kinetic behaviors of various anode-based electrocatalysts demonstrated that, exchange current density, which is a direct measure of the electrochemical reaction, increased with RuO2–CoS2-based anodes. Moreover, high levels of feed utilization were possible using these materials. Electrochemical performance, current density, and sulfur tolerance were enhanced compared to the other tested anode configurations. The structural, microstructural and surface behavior of RuO2–CoS2 anode electrocatalyst was investigated in detail.  相似文献   

6.
Complex hydrides and Metal–N–H-based materials have attracted considerable attention due to their high hydrogen content. In this paper, a novel amide–hydride combined system was prepared by ball milling a mixture of Na2LiAlH6–Mg(NH2)2 in a molar ratio of 1:1.5. The hydrogen storage performances of the Na2LiAlH6–1.5Mg(NH2)2 system were systematically investigated by a series of dehydrogenation/hydrogenation evaluation and structural analyses. It was found that a total of ∼5.08 wt% of hydrogen, equivalent to 8.65 moles of H atoms, was desorbed from the Na2LiAlH6–1.5Mg(NH2)2 combined system. In-depth investigations revealed that the variable milling treatments resulted in the different dehydrogenation reaction pathways due to the combination of Al and N caused by the energetic milling. Hydrogen uptake experiment indicated that only ∼4 moles of H atoms could be reversibly stored in the Na2LiAlH6–1.5Mg(NH2)2 system perhaps due to the formation of AlN and Mg3N2 after dehydrogenation.  相似文献   

7.
王珂 《工业加热》2023,(9):39-41+51
在目前煤炭依然作为能源主体的背景下,控制燃煤污染物排放有着重要意义。基于CFD数值模拟,建立伴流燃烧器模型,控制燃料、氧化剂入口流量恒定,设计了O2/CO2、O2/N2氧化剂氛围中O2浓度在21%~40%内的多种工况,对煤粉燃烧特性及燃烧产生的污染物进行了研究。分析了不同工况下煤粉燃烧的温度分布、燃烧速率、碳烟、NOx的生成情况。结果显示,在O2/CO2、O2/N2两种氧化剂氛围中,随着O2浓度的上升,煤粉燃烧温度升高、燃烧速率增大,碳烟生成量均增加,同等O2浓度条件下,O2/CO2氛围的煤粉燃烧温度和燃烧速率均高于O2/N2氛围,碳烟生成量小于O2/N2氛围,且O2/CO2...  相似文献   

8.
In a previous paper, it was demonstrated that a MgH2–NaAlH4 composite system had improved dehydrogenation performance compared with as-milled pure NaAlH4 and pure MgH2 alone. The purpose of the present study was to investigate the hydrogen storage properties of the MgH2–NaAlH4 composite in the presence of TiF3. 10 wt.% TiF3 was added to the MgH2–NaAlH4 mixture, and its catalytic effects were investigated. The reaction mechanism and the hydrogen storage properties were studied by X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry (DSC), temperature-programmed-desorption and isothermal sorption measurements. The DSC results show that MgH2–NaAlH4 composite milled with 10 wt.% TiF3 had lower dehydrogenation temperatures, by 100, 73, 30, and 25 °C, respectively, for each step in the four-step dehydrogenation process compared to the neat MgH2–NaAlH4 composite. Kinetic desorption results show that the MgH2–NaAlH4–TiF3 composite released about 2.4 wt.% hydrogen within 10 min at 300 °C, while the neat MgH2–NaAlH4 sample only released less than 1.0 wt.% hydrogen under the same conditions. From the Kissinger plot, the apparent activation energy, EA, for the decomposition of MgH2, NaMgH3, and NaH in the MgH2–NaAlH4–TiF3 composite was reduced to 71, 104, and 124 kJ/mol, respectively, compared with 148, 142, and 138 kJ/mol in the neat MgH2–NaAlH4 composite. The high catalytic activity of TiF3 is associated with in situ formation of a microcrystalline intermetallic Ti–Al phase from TiF3 and NaAlH4 during ball milling or the dehydrogenation process. Once formed, the Ti–Al phase acts as a real catalyst in the MgH2–NaAlH4–TiF3 composite system.  相似文献   

9.
Ni (2.5 wt%) and Co (2.5 wt%) supported over ZrO2/Al2O3 were prepared by following a hydrolytic co-precipitation method. The synthesized catalysts were further promoted by Rh incorporation (0.01–1.00 wt%) and tested for their catalytic performance for dry CO2 reforming, combined steam–CO2 reforming and oxy–CO2 reforming of methane for production of syngas. The catalysts were characterized by using N2 physical adsorption, XRD, H2–TPR, SEM, CO2–TPD, NH3–TPD, TEM and TGA. The results revealed that ZrO2 phase was in crystalline form in the catalysts along with amorphous Al oxides. Ni and Co were confirmed to be in their respective spinel phases that were reducible to metallic form at 800 °C under H2. Ni and Co were well dispersed with their nano-crystalline nature. The catalyst with 0.2% loading of Rh showed superior performance in the studied reactions for reforming of methane. This catalyst also showed good coke resistance ability for dry CO2 reforming reaction with 3.8 wt% of carbon formation during the reaction as compared to 11.6 wt% carbon formation over the catalyst without Rh. The catalyst performance was stable throughout the reaction time for CH4 conversions, irrespective of carbon formation with slight decline (~1%) in CO2 conversion. For dry CO2 reforming reaction, this catalyst showed good conversion for both CH4 and CO2 (67.6% and 71.8% respectively) with a H2/CO ratio of 0.84, while for the Oxy-CO2 reforming reaction, the activity was superior with CH4 and CO2 conversions (73.7% and 83.8% respectively) and H2/CO ratio of 1.05.  相似文献   

10.
Ni/SiO2 and Ni–Al2O3/SiO2 catalysts were prepared by incipient wetness impregnation using citrate and nitrate precursors and tested with a reaction of combination of CO2 reforming and partial oxidation of methane to produce syngas (H2/CO). The catalytic activity of Ni/SiO2 and Ni–Al2O3/SiO2 greatly depended on interaction between NiO and support. NiO strongly interacted with support formed small nickel particles (about 4 nm for NiSC which is abbreviation of Ni/SiO2 prepared with Nickel citrate precursor) after reduction. The small nickel particles over NiSC catalysts exhibited a good catalytic performance.  相似文献   

11.
Syngas production by CO2 reforming of coke oven gas (COG) was studied in a fixed-bed reactor over Ni/La2O3–ZrO2 catalysts. The catalysts were prepared by sol–gel technique and tested by XRF, BET, XRD, H2-TPR, TEM and TG–DSC. The influence of nickel loadings and calcination temperature of the catalysts on reforming reaction was measured. The characterization results revealed that all of the catalysts present excellent resistance to coking. The catalyst with appropriate nickel content and calcination temperature has better dispersion of active metal and higher conversion. It is found that the Ni/La2O3–ZrO2 catalyst with 10 wt% nickel loading provides the best catalytic activity with the conversions of CH4 and CO2 both more than 95% at 800 °C under the atmospheric pressure. The Ni/La2O3–ZrO2 catalysts show excellent catalytic performance and anti-carbon property, which will be of great prospects for catalytic CO2 reforming of COG in the future.  相似文献   

12.
Laminar burning velocities of CO–H2–CO2–O2 flames were measured by using the outwardly spherical propagating flame method. The effect of large fraction of hydrogen and CO2 on flame radiation, chemical reaction, and intrinsic flame instability were investigated. Results show that the laminar burning velocities of CO–H2–CO2–O2 mixtures increase with the increase of hydrogen fraction and decrease with the increase of CO2 fraction. The effect of hydrogen fraction on laminar burning velocity is weakened with the increase of CO2 fraction. The Davis et al. syngas mechanism can be used to calculate the syngas oxyfuel combustion at low hydrogen and CO2 fraction but needs to be revised and validated by additional experimental data for the high hydrogen and CO2 fraction. The radiation of syngas oxyfuel flame is much stronger than that of syngas–air and hydrocarbons–air flame due to the existence of large amount of CO2 in the flame. The CO2 acts as an inhibitor in the reaction process of syngas oxyfuel combustion due to the competition of the reactions of H + O2 = O + OH, CO + OH = CO2 + H and H + O2(+M) = HO2(+M) on H radical. Flame cellular structure is promoted with the increase of hydrogen fraction and is suppressed with the increase of CO2 fraction due to the combination effect of hydrodynamic and thermal-diffusive instability.  相似文献   

13.
To improve nanoconfinement of LiBH4 and MgH2 in carbon aerogel scaffold (CAS), particle size reduction of MgH2 by premilling technique before melt infiltration is proposed. MgH2 is premilled for 5 h prior to milling with LiBH4 and nanoconfinement in CAS to obtained nanoconfined 2LiBH4–premilled MgH2. Significant confinement of both LiBH4 and MgH2 in CAS, confirmed by SEM–EDS–mapping results, is achieved due to MgH2 premilling. Due to effective nanoconfinement, enhancement of CAS:hydride composite weight ratio to 1:1, resulting in increase of hydrogen storage capacity, is possible. Nanoconfined 2LiBH4–premilled MgH2 reveals a single–step dehydrogenation at 345 °C with no B2H6 release, while dehydrogenation of nanoconfined sample without MgH2 premilling performs in multiple steps at elevated temperatures (up to 430 °C) together with considerable amount of B2H6 release. Activation energy (EA) for the main dehydrogenation of nanoconfined 2LiBH4–premilled MgH2 is considerably lower than those of LiBH4 and MgH2 of bulk 2LiBH4–MgH2EA = 31.9 and 55.8 kJ/mol with respect to LiBH4 and MgH2, respectively). Approximately twice faster dehydrogenation rate are accomplished after MgH2 premilling. Three hydrogen release (T = 320 °C, P(H2) = 3–4 bar) and uptake (T = 320–325 °C, P(H2) = 84 bar) cycles of nanoconfined 2LiBH4–premilled MgH2 reveal up to 4.96 wt. % H2 (10 wt. % H2 with respect to hydride composite content), while the 1st desorption of nanoconfined sample without MgH2 premilling gives 4.30 wt. % of combined B2H6 and H2 gases. It should be remarked that not only kinetic improvement and B2H6 suppression are obtained by MgH2 premilling, but also the lowest dehydrogenation temperature (T = 320 °C) among other modified 2LiBH4–MgH2 systems is acquired.  相似文献   

14.
In situ Raman spectroscopy was used to monitor the dehydrogenation of ball-milled mixtures of LiNH2–LiBH4–MgH2 nanoparticles. The as-milled powders were found to contain a mixture of Li4BN3H10 and Mg(NH2)2, with no evidence of residual LiNH2 or LiBH4. It was observed that the dehydrogenation of both of Li4BN3H10 and Mg(NH2)2 begins at 353 K. The Mg(NH2)2 was completely consumed by 415 K, while Li4BN3H10 persisted and continued to release hydrogen up to 453 K. At higher temperatures Li4BN3H10 melts and reacts with MgH2 to form Li2Mg(NH)2 and hydrogen gas. Cycling studies of the ball-milled mixture at 423 K and 8 MPa (80 bar) found that during rehydrogenation of Li4BN3H10 Raman spectral modes reappear, indicating partial reversal of the Li4BN3H10 to Li2Mg(NH)2 transformation.  相似文献   

15.
16.
Significant improvements in the hydrogen absorption/desorption properties of the 2LiNH2–1.1MgH2–0.1LiBH4 composite have been achieved by adding 3wt% ZrCo hydride. The composite can absorb 5.3wt% hydrogen under 7.0 MPa hydrogen pressure in 10 min and desorb 3.75wt% hydrogen under 0.1 MPa H2 pressure in 60 min at 150 °C, compared with 2.75wt% and 1.67wt% hydrogen under the same hydrogenation/dehydrogenation conditions without the ZrCo hydride addition, respectively. TPD measurements showed that the dehydrogenation temperature of the ZrCo hydride-doped sample was decreased about 10 °C compared to that of the pristine sample. It is concluded that both the homogeneous distribution of ZrCo particles in the matrix observed by SEM and EDS and the destabilized N–H bonds detected by IR spectrum are the main reasons for the improvement of H-cycling kinetics of the 2LiNH2–1.1MgH2–0.1LiBH4 system.  相似文献   

17.
In this article, we investigate the ternary LiNH2–MgH2–LiBH4 hydrogen storage system by adopting various processing reaction pathways. The stoichiometric ratio of LiNH2:MgH2:LiBH4 is kept constant with a 2:1:1 molar ratio. All samples are prepared using solid-state mechano-chemical synthesis with a constant rotational speed, but with varying milling duration. Furthermore, the order of addition of parent compounds as well as the crystallite size of MgH2 are varied before milling. All samples are intimate mixtures of Li–B–N–H quaternary hydride phase with MgH2, as evidenced by XRD and FTIR measurements. It is found that the samples with MgH2 crystallite sizes of approximately 10 nm exhibit lower initial hydrogen release at a temperature of 150 °C. Furthermore, it is observed that the crystallite size of Li–B–N–H has a significant effect on the amount of hydrogen release with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160 °C and the other around 300 °C. The main hydrogen release temperature is reduced from 310 °C to 270 °C, while hydrogen is first reversibly released at temperatures as low as 150 °C with a total hydrogen capacity of ∼6 wt.%. Detailed thermal, capacity, structural and microstructural properties are discussed and correlated with the activation energies of these materials.  相似文献   

18.
Ni–Ce0.8Zr0.2O2 and Ni–MgO–Ce0.8Zr0.2O2 catalysts were investigated for H2 production from CO2 reforming of CH4 reaction at a very high gas hourly space velocity of 480,000 h−1. Ni–MgO–Ce0.8Zr0.2O2 exhibited higher catalytic activity and stability (CH4 conversion >95% at 800 °C for 200 h). The outstanding catalytic performance is mainly due to the basic nature of MgO and an intimate interaction between Ni and MgO.  相似文献   

19.
20.
Al2O3–2SiO2 amorphous powders are synthesized by sol–gel method with tetraethoxysilane (TEOS) and aluminum nitrate (ANN) as the starting materials. The microstructure and phase structure of the powders are investigated by SEM and XRD analysis. Geopolymer materials samples are prepared by mechanically mixing stoichiometric amounts of calcined Al2O3–2SiO2 powders and sodium silicate solutions to allow a mass ratio of Na2O/Al2O3 = 0.4, 0.375, 0.35, 0.325, 0.288, 0.26, 0.23 or 0.2 separately, and finally to form a homogenous slurry at a fixed H2O/Na2O mole ratio = 11.7. The results show that the synthetic Al2O3–2SiO2 powders have polycondensed property and their compressive strengthes are similar to that of nature metakaolin geopolymer materials. The results also show that the water consumption is not the main influencing factor on electrical conductivity of harden geopolymer materials but it can intensively affect the microstructure of geopolymer materials. In addition, the electrical conductivity of harden geopolymer sample is investigated, and the results show that the geopolymer materials have a high ionic electrical conductivity of about 1.5 × 10−6 S cm−1 in air at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号