首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composite membranes with hydrophilic substances can retain water and allow the operation of proton exchange membrane fuel cells (PEMFCs) under non-humidified conditions. In this work, thin Nafion composite membranes with silica are prepared to operate a PEMFC with dry fuel and oxidant. In addition, the role of silica in the catalyst layer as a water retainer is studied. In particular, the anode and the cathode are modified separately to elucidate the effect of silica. The incorporation of silica in the membrane and the catalyst layer enhances single-cell performance under non-humidified operation. The cell performance of membrane–electrode assemblies using the composite membrane and electrode is higher than that of a MEA using commercial Nafion 111 membrane under non-humidified conditions.  相似文献   

2.
In this work, a membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) operating under no external humidification has been successfully fabricated by using a composite Pt/SiO2/C catalyst at the anode. In the composite catalyst, amorphous silica, which originated from the hydrolysis of tetraethyl orthosilicate (TEOS), was immobilized on the surface of carbon powder to enhance the stability of silica and provide a well-humidified surrounding for proton transport in the catalyst layer. The characteristics of silica in the composite catalyst were investigated by XRD, SEM and XPS analysis. The single cell tests showed that the performance of the novel MEA was comparable to MEAs prepared using a standard commercial Pt/C catalyst with 100% external humidification, when both were operated on hydrogen and air. However, in the absence of humidification, the MEA using Pt/SiO2/C catalyst at the anode continued to show excellent performance, while the performance of the MEA containing only the Pt/C catalyst rapidly decayed. Long-term testing for 80 h further confirmed the high performance of the non-humidified MEA prepared with the composite catalyst. Based on the experimental data, a possible self-humidifying mechanism was proposed.  相似文献   

3.
PTFE/Nafion (PN) and PTFE/Nafion/TEOS (PNS) membranes were fabricated for the application of moderate and high temperature proton exchange membrane fuel cells (PEMFCs), respectively. Membrane electrode assemblies (MEAs) were fabricated by PTFE/Nafion (and PTFE/Nafion/TEOS) membranes with commercially available low and high temperature gas diffusion electrodes (GDEs). The effects of relative humidity, operation temperature, and back pressure on the performance and durability test of the as-prepared MEAs were investigated. Incorporating TEOS into a PNS membrane and adding another layer of carbon onto a GDE would result in low membrane conductivity and low fuel cell performance respectively. However, in this work it is shown that HT-PNS MEAs demonstrate a higher performance than LT-PN MEAs in severe conditions - high temperature (118 °C) and low humidity (25% RH). The TEOS and additional carbon layer function as water retaining agents which are especially important for high temperature and low humidity conditions. The HT-PNS MEA showed good stability in a 50 h fuel cell test at high temperature, moderate relative humidity (50% RH) and back pressure of 14.7 psi.  相似文献   

4.
The effect of an acidic inorganic additive, i.e. sulfated zirconia, on Nafion-based polymer electrolytes is evaluated by comparing the properties in terms of conductivity and fuel cell performance of a composite sulfated zirconia-added Nafion membrane with those of an additive-free Nafion membrane. The peculiar surface properties of the selected filler promote a higher hydration level and a higher conductivity for the composite membrane under unsaturated conditions, i.e. at 20% RH. Tests on H2-air fully humidified cells, monitored at 70 °C and at atmospheric pressure, reveal small differences when passing from a plain Nafion to a composite Nafion/sulfated zirconia membrane as electrolyte. However, remarkably great improvements are observed for the composite membrane-based cell when the comparison tests are run at low relative humidity and high temperature, this outlining the beneficial role of the sulfated zirconia additive.  相似文献   

5.
In this study, hydrogen crossover in long side chain Nafion 211 membrane and short side chain Aquivion membrane is studied under different conditions. It is found that both temperature and relative humidity significantly influence the hydrogen crossover in the polymer electrode membranes (PEMs). The difference in hydrogen crossover behavior between Nafion 211 membrane and Aquivion membrane is revealed. The influence of hydrogen crossover on the fuel cell lifetime is also investigated under open circuit voltage (OCV). It is proved hydrogen crossover in the PEM would lead to possible degradation of the PEM and the decrease of electro-chemical surface area in the catalyst of the single cell. Single cell assembled with Aquivion membrane shows slower OCV and ECSA decay compared to the Nafion 211 single cell. Our results suggest that the PEM fuel cell lifetime is closely related to the hydrogen crossover in the PEM. The current study also highlights the possibility of improving the fuel cell durability by rational design of the PEM morphology.  相似文献   

6.
7.
We report here the performance of a metal-based integrated composite membrane electrode assembly (IC-MEA) in direct methanol fuel cell (DMFC). The IC-MEA integrates the multi-functions of a conventional MEA, gas diffusion layer (GDL) and current collector. It was fabricated by impregnating Nafion electrolyte into a sandwiched structure containing expanding-Polytetrafluoroethylene (e-PTFE) and porous titanium sheets and subsequently coating with catalyst layer and microporous layer (MPL). While operating with air and 2 M methanol under ambient pressure, the IC-MEA in DMFC can yield a maximum power density of 19 mW cm−2 at 26 °C, higher than a in-house made Nafion 115 MEA under the same working conditions. The IC-MEAs has been successfully applied to planar multi-cell stacks.  相似文献   

8.
A proton exchange membrane fuel cell operating with no external humidification support was successfully reported using a novel silica composite layer on the anode side (Pt/C/SiO2/Nafion). The nanosilica derived from tetramethoxy silane (TMOS) provided excellent porous morphology to retain water and hydrate protons. This layer provides a well-humidified environment for protons and easy proton transfer from the catalyst surface to the membrane electrolyte. The characteristics of the silica composite layer were investigated by various characterization methods: SEM, XRD, TEM, XPS, EIS, and TGA. A single cell fabricated with the anode containing this new silica composite layer showed a performance of 0.9 W/cm2 which is two folds greater when tested with the commercial catalyst MEA (0.45 W/cm2). MEA delivered a constant output power (at 0.6 V) under dry and humidified gas conditions which shows excellent electrochemical stability and durability.  相似文献   

9.
A Nafion and polyaniline composite membrane (designated Nafion/PANI) was fabricated using an in situ chemical polymerization method. The composite membrane showed a proton conductivity that was superior to that obtained with Nafion® 112 at low humidity (e.g. RH = 60%). Water uptake measurements revealed similarities between the Nafion® 112 and Nafion/PANI membranes at different humidities. The high conductivity of the Nafion/PANI membrane at low humidity is hypothesized to be due to the existence of the extended conjugated bonds in the polyaniline; proton transfer is facilitated via the conjugated bonds in lower humidity environments allowing retention of the relatively high conductivity. Correspondingly, the performance of a single cell fuel cell containing the Nafion/PANI composite membrane is improved compared to a Nafion® 112-containing cell under low humidity conditions. This is important for portable fuel cells, which are required to operate without external humidification.  相似文献   

10.
Developing self-humidifying membrane electrode assembly (MEA) is of great significance for the practical use of proton exchange membrane fuel cell (PEMFC). In this work, a phosphoric acid (PA)-loaded Schiff base networks (SNW)-type covalent organic framework (COF) is proposed as the anode catalyst layer (CL) additive to enhance the PEMFC performance under low humidity conditions. The unique polymer structure and immobilized PA endow the proposed COF network with not only excellent water retention capacity but also proton transfer ability, thus leading to the superior low humidity performance of the PEMFC. The optimization of the additive content, the effect of relative humidity (RH) and PEMFC operating temperature are investigated by means of electrochemical characterization and single cell test. At a normal operation temperature of 60 °C and 38% RH, the MEA with optimized COF content (10 wt%) showes the maximum power density of 582 mW cm?2, which is almost 7 times higher than that of the routine MEA (85 mW cm?2). Furthermore, a preliminary durability test demonstrates the potential of the proposed PEMFC for practice operation under low humidity environment.  相似文献   

11.
This study examined methanol crossover through PtRu/Nafion composite membranes for the direct methanol fuel cell. For this purpose, 0.03, 0.05 and 0.10 wt% PtRu/Nafion composite membranes were fabricated using a solution impregnation method. The composite membrane was characterized by inductively coupled plasma-mass spectroscopy and thermo-gravimetric analysis. The methanol permeability and proton conductivity of the composite membranes were measured by gas chromatography and impedance spectroscopy, respectively. In addition, the composite membrane performance was evaluated using a single cell test. The proton conductivity of the composite membrane decreased with increasing number of PtRu particles embedded in the pure Nafion membrane, while the level of methanol permeation was retarded. From the results of the single cell test, the maximum performance of the composite membrane was approximately 27% and 31% higher than that of the pure Nafion membrane at an operating temperature of 30 and 45 °C, respectively. The optimum loading of PtRu was determined to be 0.05 wt% PtRu/Nafion composite membrane.The PtRu particles embedded in the Nafion membrane act as a barrier against methanol crossover by the chemical oxidation of methanol on embedded PtRu particles and by reducing the proton conduction pathway.  相似文献   

12.
The short-side-chain (SSC) perfluorosulfonic acid (PFSA) membranes are important candidates as membrane electrolytes applied for high temperature or low relative humidity (RH) proton exchange membrane fuel cells. In this paper, the fuel cell performance, proton conductivity, proton mobility, and water vapor absorption of SSC PFSA electrolytes and the reinforced SSC PFSA/PTFE composite membrane are investigated with respect to temperature. The pristine SSC PFSA membrane and reinforced SSC composite membrane show better fuel cell performance and proton conductivity, especially at high temperature and low relative humidity conditions, compared to the long-side-chain (LSC) Nafion membrane. Under the same condition, the proton mobility of SSC PFSA membranes is lower than that of the LSC PFSA membrane. The water vapor uptake values for Nafion 211 membrane, pristine SSC PFSA membrane and SSC PFSA/PTFE composite membrane are 9.62, 11.13, and 11.53 respectively at 40 °C and they increase to 9.89, 12.55 and 13.09 respectively at 120 °C. The high water content of SSC PFSA membrane makes it maintain high performance even at elevated temperatures.  相似文献   

13.
A high water retention membrane is developed by co-assembling poly(ethylene glycol) (PEG) grafted activated carbon (AC-PEG) with Nafion. The AC-PEG is prepared via a sol–gel process. The use of PEG as a transporting medium in AC-PEG shows a largely improved water retention ability, a higher proton conductivity and a reduced swelling ratio, making it well suited for proton exchange membrane fuel cells (PEMFCs). Further, the composite membranes show improved mechanical properties at high temperature, thus ensuring the structural stability of membranes during the fuel cell operation. Compositional optimized AC-PEG/Nafion composite membrane (15 wt% compared to Nafion) demonstrates a better performance than the commercially available counterpart, Nafion 212, in fuel cell measurements. To identify the key factor of the improved performance, current interrupt technique is used to quantitatively verify the changes of resistance under different relative humidity environment.  相似文献   

14.
A novel multilayer membrane for the proton exchange membrane fuel cell (PEMFC) was developed. Nafion was dispersed uniformly onto both sides of the sulfonated polyimide (SPI) membrane. The Nafion/SPI/Nafion composite membrane was prepared by immersing the SPI into the Nafion-containing casting solution. Through immersing both membranes into the Fenton solution at 80 °C for 0.5 h for an accelerated ex situ test, chromatographic analysis of the water evacuated from the cathode and the anode of the cells and a durability test of a single proton exchange membrane fuel cells, it was proved that the stability of the composite membrane has been greatly improved by adding the Nafion layer compared with the SPI membrane. The fuel cell performance with the SPI and Nafion/SPI/Nafion membranes was similar to the performance with the commercial product Nafion® NRE-212 membrane at 80 °C.  相似文献   

15.
To reduce the performance difference of membrane electrode assembles (MEAs) between catalyst coated membrane (CCM) and gas diffusion electrode (GDE) methods, this study presents a novel structure of a glue-functioned Nafion layer coating on the catalyst layer of GDEs to enhance performance. The process of hot pressing is omitted from the membrane electrode assembly (MEA) fabrication in this study. In exploring the effect of the glue-functioned Nafion layer, five MEAs are compared, including one made by the CCM method and four by the GDE method. Loadings of 0, 0.1, 0.3 and 0.5 mg cm−2 of glue-functioned Nafion layer are coated on the surface of the catalyst layer at room temperature with a condensed Nafion solution (20 wt%). The performance of the 0.3 mg cm−2 Nafion layer coating improves 55% compared with that without an extra Nafion layer for the peak power density, and the performance difference reduces from 61.2% to 39.4% when compared with the one using the CCM method. However, the performance of the 0.5 mg cm−2 Nafion layer coating is almost the same as without the Nafion layer. This indicates that increased Nafion cannot guarantee higher performance.  相似文献   

16.
Single-step fabrication of a Poly(2,5-benzimidazole) (ABPBI)-based gas diffusion electrode (GDE) by directly adding a carbon-supported-catalyst to a homogeneous ABPBI solution prior to deposition and its membrane electrode assembly (MEA) were investigated for high-temperature proton exchange membrane (PEM) fuel cell applications. The ABPBI and LiCl dosages of the catalyst layer were varied. The characterizations of the resulting electrodes and/or MEA for the gas permeability, electrical resistance, specific electrochemical surface area, AC impedance, cyclic voltammetry and high-temperature PEM fuel cell performance were carried out. The high-temperature PEM fuel cell was successfully demonstrated at temperatures of up to 180 °C under ambient pressure operation. The fuel cell performance was evaluated by using dry hydrogen/oxygen gases, which added the advantage of eliminating the complicated humidification system of Nafion cells. The obtained results revealed that a catalyst layer with an ABPBI content of 15 wt.% and an ABPBI/LiCl ratio of 1:2 was sufficient to obtain the optimal cell performance with better electrochemical properties of low cell impedance, high electrochemical activity, low contact resistance and short activation time.  相似文献   

17.
Nafion is one of the polymer materials used as polymer electrode membrane (PEM) for fuel cells. However, the electrochemical reaction and water management processes that occur at the catalyst layer affect the performance and degradation of the membrane in the fuel cell resulting in various degradation mechanisms. Understanding the degradation mechanisms of the Nafion membrane in operation, the anhydrous and electrochemical conditions in the fuel cell is highly a necessity as outlined in this review. This review further recommends that further improvement in the Nafion membrane can be made by fabrication and coating the Nafion membrane with materials that can withstand the electrochemical environment in the fuel cell.  相似文献   

18.
19.
An improved fabrication technique for conventional hot-pressed membrane electrode assemblies (MEAs) with carbon supported cobalt triethylenetetramine (CoTETA/C) as the cathode catalyst is investigated. The V-I results of PEM single cell tests show that addition of glycol to the cathode catalyst ink leads to significantly higher electrochemical performance and power density than the single cell prepared by the traditional method. SEM analysis shows that the MEAs prepared by the conventional hot-pressed method have cracks between the cathode catalyst layer and Nafion membrane, and the contact problem between cathode catalyst layer and Nafion membrane is greatly suppressed by addition of glycol to the cathode catalyst ink. Current density-voltage curve and impedance studies illuminate that the MEAs prepared by adding glycol to the cathode catalyst ink have a higher electrochemical surface area, lower cell ohmic resistance, and lower charge transfer resistance. The effects of CoTETA/C loading, Nafion content, and Pt loading are also studied. By optimizing the preparation parameters of the MEA, the as-fabricated cell with a Pt loading of 0.15 mg cm−2 delivers a maximum power density of 181.1 mW cm−2, and a power density of 126.2 mW cm−2 at a voltage of 0.4 V.  相似文献   

20.
The electrode with various contents of Nafion ionomer for inside and/or on the surface in the catalyst layer, respectively, was designed for proton exchange membrane fuel cell (PEMFC) electrode to investigate the effect of Nafion ionomer distribution in the catalyst layer on cell performance and improve electrode performance. The effect of Nafion ionomer on the electrode of each design was judged by a cyclic voltammetry measurement and the cell performance obtained through a single cell test using H2/O2 gases. Electrodes with different ionomer distributions for inside and on the surface in the catalyst layer, respectively, were examined. It is found that the electrode where the Nafion ionomer is impregnated on the surface of catalyst layer shows better cell performance than that where the Nafion ionomer is incorporated in the inside of catalyst layer. The best cell performance among the catalyst layers tested in this study was obtained for the electrode with 0.5 mg cm−2 of Nafion ionomer inside the catalyst layer and 1.0 mg cm−2 of Nafion ionomer on the surface of the catalyst layer together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号