首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An intense scientific activity was recorded during the last several years in the field of preparation, characterization and use of copper-based TiO2 photocatalysts for hydrogen generation through photocatalytic reforming of organics. Different copper species were used dissolved in aqueous solution or incorporated on the TiO2 surface as single co-catalyst or in the presence of a second catalyst (e.g., graphene, carbon fibers) to (1) effectively separate the electron–hole pairs, thus reducing the occurrence of the recombination reaction, and (2) extend the light absorption to the visible range of the solar spectrum. Many organic species (e.g., methanol, glycerol, formic acid) were proposed as sacrificial agents for hydrogen generation, although the prevailing idea is that of using organic compounds currently found in industrial wastewaters. The pH value was recognized as a fundamental variable in photocatalytic H2 generation via copper modified-TiO2 catalysts. A positive effect to promote hydrogen generation was associated to an increase in pH until moderate alkaline values. On the other hand, a release in the solution of cupric ions and a consequent decrease in photocatalytic activity were observed when decreasing pH. A relevant lack of information was recorded about the efficiencies of hydrogen generation which were reported only in few papers. Therefore, this critical literature review has been performed with the aim of providing a complete background to select the most efficient approaches and eventually promote new competitive systems for hydrogen generation via photoreforming for industrial applications.  相似文献   

2.
The supercritical water gasification (SCWG) of real dairy wastewater (cheese-based or whey) was performed in a batch reactor in presence of two catalysts (MnO2, MgO) and one additive (formic acid). The operational conditions of this work were at a temperature range of 350–400 C and the residence time of 30–60 min. The catalysts and formic acid were applied in 1 wt%, 3 wt%, and 5 wt% to determine their effect on hydrogen production. The concentrations of catalysts and formic acid were calculated based on the weight of feedstock without ash. The results showed that increased temperature and prolonged residence time contributed to the hydrogen production (HP) and gasification efficiency (GE). The gas yield of hydrogen in the optimum condition (400 C and 60 min) was achieved as 1.36 mmol/gr DAF (dry ash free). Formic acid addition was favored towards enhancing hydrogen content while the addition of metal oxides (MnO2 and MgO) had an apex in their hydrogen production and they reached the highest hydrogen in 1 wt% concentration then ebbed. Moreover, GE was increased by the addition of the catalysts and formic acid concentrations. The highest hydrogen content (35.4%) was obtained in 1 wt% MnO2 and the highest GE (32.22%) was attained in the 5 wt% formic acid concentration. A reaction pathway was proposed based on the GC-MS data of feedstock and produced liquid phase at different condition as well as similar studies.  相似文献   

3.
Using various organics as electron donor, (CuIn)0.2Zn1.6S2 microsphere solid solution prepared via hydrothermal method as photocatalyst, hydrogen production by anaerobic photocatalytic reforming organics were researched. The photocatalytic hydrogen production activity was notably enhanced in the presence of the organic electron donors. Formic acid was found to be the most efficient sacrificial agent among methanol, glucose, triethanolamine and formic acid. The effects of initial formic acid concentration on hydrogen generation were investigated. When the initial formic acid concentration was 10 vol%, the photocatalytic activity reached the highest. The average activity in initial 10 h can amount to 144 μmol h−1. The possible mechanism of photocatalytic reaction for hydrogen production with simultaneous formic acid degradation was discussed preliminary.  相似文献   

4.
This research presents a method of hydrogen production from formic acid with the use of fluidized bed technology. The core-shell catalyst was developed by applying the Ni layer on cenospheres via a technique of gaseous deposition. The efficiency of the decomposition of formic acid was tested continuously in the range of 200–500 °C. An analytical method, based on infrared spectroscopy, allowing the continuous monitoring of the concentration of products in the gas phase has been developed. A 67% yield of hydrogen was achieved at 233 °C. The proposed solution in a fluidized bed has been compared with other methods of obtaining hydrogen from formic acid. The most important advantages of the proposed solutions are on-demand hydrogen generation; the use of an energy carrier that can be obtained from biomass or CO2; simplicity of the process including easy control of the process temperature; repeatability; ease of scaling the fluidized process; the possibility of continuous monitoring of the products of the process; high efficiency of hydrogen generation per unit volume of the reactor.  相似文献   

5.
The utilization of formic acid as a liquid organic hydrogen carrier has taken a vast interest lately because of several desirable properties. The state-of-the-art homogenous catalysts known for formic acid dehydrogenation are mainly based on noble metals such as iridium or ruthenium. 3d metals are considered to be an attractive alternative due to their abundance and low toxicity. Exploration of 3d metals has achieved exciting results mainly with iron-based catalysts; however, manganese has not received much attention, and only a few examples are available. Here we report a manganese complex [Mn(PN3P)(CO)2]Br containing a pincer backbone, as an efficient catalyst for formic acid dehydrogenation. Under the optimized condition, the complex afforded a TON of 15,200. To the best of our knowledge, this is considered one of the best TON achieved using a manganese-based complex with excellent selectivity. Mechanistic studies suggested that the imine arm participates in the formic acid activation/deprotonation step, emphasizing the importance of metal-ligand cooperativity during substrate activation to promote catalytic efficacy.  相似文献   

6.
Few studies have been published about large scale heterogeneous photocatalysis hydrogen generation with simultaneous removal of organic pollutants. The purpose of the present work was to study the simultaneous photocatalytic hydrogen production and organic pollutant removal under direct solar irradiation at pilot-plant scale. The experiments were performed in a Compound Parabolic Collector (CPC) at the Plataforma Solar de Almería (PSA). The efficiencies of two different photocatalytic systems, one based on a nitrogen doped and platinized TiO2, and the other using a platinized CdS–ZnS composite were evaluated. Formic acid and glycerol were used as sacrificial electron donors. Also, experiments using real municipal wastewaters were carried out showing simultaneous hydrogen generation and partial water pollutant removal. The largest amounts of hydrogen were obtained with aqueous solutions of formic acid, although the experiments with real wastewater gave moderate amounts of hydrogen, pointing towards the possible future use of such waters for photocatalytic hydrogen generation.  相似文献   

7.
Alcoholysis of sodium borohydride offers advantages due to reduction in number of steps for recycling of sodium borohydride, elimination of freezing problems that are associated with the use of water, fast generation of hydrogen, etc. Methanol was used to liberate hydrogen from sodium borohydride. The influence of the amount of solvent, substrate concentration, temperature and catalyst on the kinetics of alcoholysis reaction in non‐stabilized sodium borohydride has been examined in the present study. The reaction was found to be first order with respect to substrate concentration and zero order with respect to solvent concentration. Effect of soluble metal salts, metal powder and metal boride as catalysts on hydrogen generation rate has also been investigated. It was found that NiCl2, Ni2B and RuCl3 were effective catalysts and hydrogen generation proceeds with high efficiency in the presence of these catalysts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Supercritical water gasification (SCWG) is a promising technology for converting wet biomass and waste into renewable energy. While the fundamental mechanism involved in SCWG of biomass is not completely understood, especially hydrogen (H2) production produced from the interaction among key intermediates. In the present study, formaldehyde mixed with formic acid as model intermediates were tested in a batch reactor at 400 °C and 25 MPa for 30 min. The gas and liquid phases were collected and analyzed to determine a possible mechanism for H2 production. Results clearly showed that both gasification efficiency (GE) and hydrogen efficiency (HE) increased with addition of formic acid, and the maximum H2 yield reached 17.92 mol/kg with a relative formic acid content of 66.67% in the mixtures. The total organic carbon removal rate and formaldehyde conversion rate also increased to 67.33% and 89.81% respectively. The reaction pathways for H2 formation form mixtures was proposed and evaluated, formic acid promoted self-decomposition of formaldehyde to generate H2, and induced a radical reaction of generated methanol to produce more H2.  相似文献   

9.
The objective of this work is to develop a process flow modeling for the synthesis of formic acid from CO2 and H2 for energy storage and transport purposes. The use of formic acid as an energy storage medium is promising due to difficulties in hydrogen storage, where formic acid can be stored for a longer time with less losses, and then can be utilized in a direct formic acid fuel cell for cleaner power generation. The process flow is developed using Aspen Plus and Engineering Equation Solver to obtain the energy and mass balances, efficiencies, fuel utilization, and Nernst voltage of the direct formic acid fuel cell. The model is validated against data available in the literature for operating parameters. The results show that the operation parameters such as formic acid formation rate, heat duty, and work values, fuel cell efficiency have a significant influence on the overall performance. The proposed system forms formic acid from gaseous H2 and CO2 with an energy efficiency of about 19%. The formed formic acid is initially stored in a tank for energy storage and then used in a direct formic acid fuel cell to produce about 168 kW power with an energy efficiency of 16% at 0.7 V, 25 °C and 1 bar.  相似文献   

10.
The development of active and stable catalyst is of significance for hydrogen generation from formic acid. Herein, a novel palladium catalyst with ultrafine metallic nanoparticles anchored on NH2-functionalized reduced graphene oxide (NH2-rGO) was synthesized by a facile wet chemical reduction process using sodium borohydride as the reducing agent. The TEM and XPS characterization results confirmed the successful functionalization of rGO with 3-aminopropyltriethoxysilane (APTES), which plays a very important role in evenly dispersing ultrafine Pd nanoparticles with a small average size of about 2.3 nm. As a result, the as-prepared Pd/NH2-rGO catalyst exhibited excellent activity with a high initial turnover frequency of 767 h−1 and 100% hydrogen selectivity, which was predominant among the currently available pure Pd catalysts towards formic acid dehydrogenation under room temperature.  相似文献   

11.
Developing an efficient, stable and low-cost photocatalytic hydrogen production from formic acid is a daunting challenge and has attracted the intense interest of many of researchers. In this paper, we report the synthesis of novel composite photocatalysts (Ni2P/Zn3In2S6 (ZIS6) and MoP/ZIS6) and their catalytic performance for H2 production reaction from formic acid under visible light irradiation, in which Ni2P and MoP were used as cocatalysts to enhance hydrogen generation activity of ZIS6. The photocatalytic hydrogen production rates of the optimized 1.5 wt% Ni2P/ZIS6 (45.73 μmol·h−1) and 0.25 wt% MoP/ZIS6 (92.69 μmol·h−1) were 3.5 times and 7.2 times higher than that of the pure ZIS6 (12.88 μmol·h−1), respectively. The apparent quantum efficiency at wavelength λ = 400 ± 10 nm for the two photocatalysts was about 1.8% and 6.4%, respectively. Significantly, it was found that the remarkable improvement of hydrogen production performance is attributed to the introduction of the phosphide cocatalysts, which can serve as a charge separation center and an active site for photocatalytic hydrogen production from the decomposition of formic acid. The reaction mechanism of photocatalytic hydrogen production from formic acid was also proposed.  相似文献   

12.
In this paper, we give an overview of recent advances in the production of formic acid, as a hydrogen carrier, from CO2 and water by using the earth-abundant metal of Fe as the reductant under hydrothermal conditions, which mainly includes: 1) hydrogen production from water with Fe; 2) reduction of HCO3 to formic acid in the presence and absence of catalysts; 3) proposed reaction mechanisms. The novel options under this study are mainly the use of water as a hydrogen source with metal Fe as a reductant, and the formed FexOy as an auto-catalyst. Such a process possesses several benefits: (i) water acts not only as a hydrogen source but also as an environmentally benign solvent; (ii) there are no hydrogen requirements, including pumps or storage, because hydrogen is derived from water and reacts with CO2in situ; (iii) no exotic catalysts or harsh reagents are used; and (iv) the method is simple and highly efficient. This technology can provide a one-step, sustainable and highly efficient way to reduce CO2 into formic acid using the hydrogen directly from water.  相似文献   

13.
The electrochemical reduction of CO2 in KOH/methanol-based electrolyte has been investigated on a lead wire electrode at ambient temperature and pressure. The major products of electrochemical reduction of CO2 were formic acid, CO and methane. The formation of formic acid from CO2 predominated in the potential range −1.8 to −2.5 V vs Ag/AgCl (saturated KCl). Hydrogen evolution in competition with CO2 reduction was observed at only 3.5% faradaic efficiency. The partial current density for CO2 reduction was more than 22 times larger than that for hydrogen evolution. Study of the Tafel plot showed that the reduction of CO2 to formic acid and CO was not limited by mass transfer in this potential range.  相似文献   

14.
Formic acid (FA, HCOOH), a convenient and safe hydrogen storage material, has the great potential for fuel cell applications. However, hydrogen generation of FA is inefficient in the presence of heterogeneous catalysts at relatively low temperatures, which remains a big challenge. Herein, La2O3-modified highly dispersed AuPd alloy nanoparticles (AuPdLa2O3) with small particle size have been successfully anchored on carbon nanotubes (CNTs) by a facile co-reduction route. Moreover, the catalyst exhibits excellent catalytic activity and 100% hydrogen selectivity for hydrogen generation in the formic acid/sodium formate (FA/SF) system with the initial turnover frequency (TOF) value of 589 mol H2 mol?1 catalyst h?1 at 50 °C and 280 mol H2 mol?1 catalyst h?1 even at room temperature (25 °C). The present Au0.3Pd0.7-(La2O3)0.6/CNTs with superior catalysis on FA dehydrogenation without any CO generation at room temperature can not only pave the way for practical application of hydrogen storage system, but also can be extended to other catalysis system.  相似文献   

15.
In-situ hydrodeoxygenation of phenol with aqueous hydrogen donor over supported Ni catalyst was investigated. The supported Ni catalysts exerted very poor performance, if formic acid was used as the hydrogen donor. Catalyst modification by loading K, Na, Mg or La salt could not make the catalyst performance improved. If gaseous hydrogen was used as the hydrogen source the activity of Ni/Al2O3 was pretty high. CO2 was found poisonous to the catalysis, due to the competitive adoption of phenol with CO2. If formic acid was replaced by methanol, the catalyst performance improved remarkably, with major products of cyclohexanone and cyclohexanol. The better effect of methanol enlightened the application of the supported Ni catalyst in in-situ hydrodeoxygenation of phenol.  相似文献   

16.
Supercritical water gasification (SCWG) is a novel technology for environmental pollution management and hydrogen production from biomass and wastes. In this study, the SCWG of black liquor (BL) which is high-potential biomass and rich in alkalis was investigated. The experiments were conducted in a batch reactor at 350–400 °C, reaction time of 1–60 min, and constant concentration of 9 wt% of BL in the absence and presence of heterogeneous catalysts (3–5 wt%), lignocellulosic biomass, and formic acid (5 and 7 wt %) in three parts. First, the SCWG of BL was performed without any additive. The experimental results showed that the maximum production of H2, CO2, and CH4 was obtained at the highest temperature and reaction time; 400 °C and 60 min. The hydrogen yield was also enhanced by increasing the temperature, and reached 3.51 mol H2/kg dry ash free-black liquor (DAF-BL) at 400 °C. Reaction time increment improved the gas product and gasification efficiency up to 28.03 mmol and 21.73%, respectively. Subsequently, three heterogeneous catalysts (MnO2, CuO, and TiO2) were used, however 5 wt% of MnO2 was the best catalyst, significantly improving the hydrogen yield compared to the same condition of BL gasification without a catalyst. Hydrogen yield reached 5.09 mol H2/kg (DAF-BL) at 400 °C and the reaction time of 10 min. Finally, BL with poplar wood residue as a lignocellulosic biomass and formic acid was gasified separately and the highest hydrogen yield was obtained in the case of 5 wt% of formic acid (10.79 mol H2/kg (DAF-BL)). Overally, SCWG dramatically reduced the chemical oxygen demand of BL to 76% using 5 wt% of formic acid.  相似文献   

17.
Formic acid is well-recognized as safe and convenient hydrogen carrier. Development of active and cost-effective catalysts for formic acid to hydrogen conversion is important problem of hydrogen energy field. Herein, we report on new Co catalysts supported on oxidized multi-walled carbon nanotubes (MWCNTs), which demonstrate high efficiency in the gas-phase formic acid decomposition affording molecular hydrogen. Various parameters of the catalysts, Co loading, MWCNTs structure, and nanotubes treatment conditions, have been investigated in terms of their influence on the catalytic properties. The catalysts morphology has been characterized with a set of physicochemical methods. It is found that the catalytic activity of Co particles depends on their electronic state and location on the support. Co species located inside the MWCNTs channels are less active than Co species stabilized on the outer surface. An increase in the content of Co nanoparticles on the MWCNT outer surface leads to a higher catalytic activity.  相似文献   

18.
To improve the utilization and activity of anodic catalysts for formic acid electrooxidation, palladium (Pd) particles were loaded on the MWCNTs, which were functionalized in a mixture of 96% sulfuric acid and 4-aminobenzenesulfonic acid, using sodium nitrite to produce intermediate diazonium salts from substituted anilines. The composition, particle size, and crystallinity of the Pd/f-MWCNTs catalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS) measurements. The electrocatalytic properties of the Pd/f-MWCNTs catalysts for formic acid oxidation were investigated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) in 0.5 mol L−1 H2SO4 solution. The results demonstrated that the catalytic activity was greatly enhanced due to the improved water-solubility and dispersion of the f-MWCNTs, which were facile to make the small particle size (3.8 nm) and uniform dispersion of Pd particles loading on the surface of the MWCNTs. In addition, the functionalized MWCNTs with benzenesulfonic group can provide benzenesulfonic anions in aqueous solution, which may combine with hydrogen cation and then promote the oxidation of formic acid reactive intermediates. So the Pd/f-MWCNTs composites showed excellent electrocatalytic activity for formic acid oxidation.  相似文献   

19.
Formic acid has been widely regarded as a safe and sustainable hydrogen storage material. Despite tremendous efforts, developing low-noble-metal-loading material with high activity for the dehydrogenation of formic acid remains a great challenge. Here, carbon supported highly homogeneous trimetallic NiAuPd alloy nanoparticles are prepared and employed as catalyst for the selective dehydrogenation of formic acid. Unexpectedly, at Ni molar contents as high as 40%, the resultant Ni0.40Au0.15Pd0.45/C exhibits high activity and 100% hydrogen selectivity for hydrogen generation from formic acid aqueous solution without any additives even at 298 K. Such a low-noble-metal-loading catalyst with high activity may greatly encourage the practical application of formic acid as a hydrogen storage material.  相似文献   

20.
Well-dispersed palladium nanoparticles (NPs) anchored on a porous N-doped carbon is prepared by wet chemical method, using metal organic frameworks (ZIF-8) as a precursor to derive the porous N-doped carbon support. Benefitting from the N-doping and the porous structure of the carbon materials, the final Pd NPs are in high dispersion and exhibit reduced particle sizes, with electronic structure and chemical status tuned to favor the formic acid decomposition (FAD). The prepared Pd/CZIF-8-950 catalysts show enhanced catalytic performance and selectivity for FAD, the turnover of frequency (TOF) and the mass activity up to 1166 h−1 and 11.01 mol H2 g−1 pd h−1 were obtained at 30 °C. This work provides an effective and easy way for synthesis the Pd-based catalyst, which has enormous application prospects for the next generation hydrogen energy preparation and storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号