首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The production of biohydrogen from glycerol, by the hyperthermophilic bacterium Thermotoga maritima DSM 3109, was investigated in batch and chemostat systems. T. maritima converted glycerol to mainly acetate, CO2 and H2. Maximal hydrogen yields of 2.84 and 2.41 hydrogen per glycerol were observed for batch and chemostat cultivations, respectively. For batch cultivations: i) hydrogen production rates decreased with increasing initial glycerol concentration, ii) growth and hydrogen production was optimal in the pH range of 7–7.5, and iii) a yeast extract concentration of 2 g/l led to optimal hydrogen production. Stable growth could be maintained in a chemostat, however, when dilution rates exceeded 0.025 h−1 glycerol conversion was incomplete. A detailed overview of the catabolic pathway involved in glycerol fermentation to hydrogen by T. maritima is given. Based on comparative genomics the ability to grow on glycerol can be considered as a general trait of Thermotoga species. The exceptional bioenergetics of hydrogen formation from glycerol is discussed.  相似文献   

2.
Anaerobic growth of Thermotoga neapolitana led maximum to hydrogen yield of 3.85 ± 0.07 mol H2/mol glucose and production rate of 51 ml/l/h. This productivity is strongly affected by stirring, pH buffering, N2 sparging and culture/headspace volume ratio. Embden–Meyerhoff pathway is the only glycolytic route in T. neapolitana but, under the conditions used in this study, about 12–15% of the biogas requires consumption of protein source. Reduction of the hydrogen yields below the theoretical 4 mol H2/mol glucose is mainly due to production of lactate and alanine that affect the availability of pyruvate/NADH for the hydrogenase, as well as to loss of part of glucose by conversion to fructose that is eventually released in the medium. Hydrogen productivity is modulated during the bacterial growth and major biogas synthesis is recorded in the stationary phase in concomitance with reduction of lactate synthesis. Apparently, this event is not consistent with an equal increase in acetate production. In agreement with the hydrogenase model recently proposed for the sister species Thermotoga maritima, this suggests that cellular NADH+ ratio has a crucial role on biogas synthesis.  相似文献   

3.
A new hydrogen-producing bacterial strain Ethanoligenens harbinense B49 was examined for its capability of H2 production with glucose as sole carbon source. The H2 production was significantly affected by the concentration of the yeast powder and phosphate in the synthetic medium. The optimized concentration of yeast powder was 0.3–0.5 g/L and the maximum hydrogen yield was obtained at the concentration of phosphate about 100–150 mmol/L. The dynamics of hydrogen production showed that rapid evolution of hydrogen appeared to start after the middle-phase of exponential growth (about 8 h). The maximum H2 yield and specific hydrogen production rate were estimated to be 2.26 mol H2/mol glucose and 27.74 mmol H2/g cell, respectively, when 10 g/L of glucose was present in the medium. The possible pathway of hydrogen production by Ethanoligenens sp. B49 during glucose fermentation was oxidative decarboxylation of pyruvate and the NADH pathway.  相似文献   

4.
Microbial hydrogen production is currently hampered by lack of efficiency. We examine how hydrogen production in the hyperthermophilic bacterium Thermotoga maritima can be increased in silico. An updated genome-scale metabolic model of T. maritima was used to i) describe in detail the H2 metabolism in this bacterium, ii) identify suitable carbon sources for enhancing H2 production, and iii) to design knockout strains, which increased the in silico hydrogen production up to 20%. A novel synthetic oxidative module was further designed, which connects the cellular NADPH and ferredoxin pools by inserting into the model a NADPH-ferredoxin reductase. We then combined this in silico knock-in strain with a knockout strain design, resulting in an in silico production strain with a predicted 125% increase in hydrogen yield. The in silico strains designs presented here may serve as blueprints for future metabolic engineering efforts of T. maritima.  相似文献   

5.
A hydrogen producer was successfully isolated from anaerobic digested palm oil mill effluent (POME) sludge. The strain, designated as Clostridium butyricum EB6, efficiently produced hydrogen concurrently with cell growth. A controlled study was done on a synthetic medium at an initial pH value of 6.0 with 10 g/L glucose with the maximum hydrogen production at 948 mL H2/L-medium and the volumetric hydrogen production rate at 172 mL H2/L-medium/h. The supplementation of yeast extract was shown to have a significant effect with a maximum hydrogen production of 992 mL H2/L-medium at 4 g/L of yeast extract added. The effect of pH on hydrogen production from POME was investigated. Experimental results showed that the optimum hydrogen production ability occurred at pH 5.5. The maximum hydrogen production and maximum volumetric hydrogen production rate were at 3195 mL H2/L-medium and 1034 mL H2/L-medium/h, respectively. The hydrogen content in the biogas produced was in the range of 60–70%.  相似文献   

6.
Efficient conversion of glycerol waste from biodiesel manufacturing processes into biohydrogen by the hyperthermophilic eubacterium Thermotoga neapolitana DSM 4359 was investigated. Biohydrogen production by T. neapolitana was examined using the batch cultivation mode in culture medium containing pure glycerol or glycerol waste as the sole substrate. Pre-treated glycerol waste showed higher hydrogen (H2) production than untreated waste. Nitrogen (N2) sparging and pH control were successfully implemented to maintain the culture pH and to reduce H2 partial pressure in the headspace for optimal growth rate and to enhance hydrogen production from the glycerol waste. It was found that hydrogen production increased from 1.24 ± 0.06 to 1.98 ± 0.1 mol-H2 mol−1 glycerolconsumed by optimising N2 sparging and pH control. We observed that in medium containing 0.05 M HEPES, with three cycles of N2 sparging, the H2 yield increased to 2.73 ± 0.14 mol-H2 mol−1 glycerolconsumed, which was 2.22-fold higher than the non-N2 sparged H2 yield (1.23 ± 0.06 mol-H2 mol−1 glycerolconsumed).  相似文献   

7.
An investigation of biological hydrogen production from glucose by Clostridium beijerinckii was conducted in a synthetic wastewater solution. A study examining the effect of initial pH (range 5.7–6.5) and substrate loading (range 1–3 g COD/L) on the specific conversion and hydrogen production rate has shown interaction behaviour between the two independent variables. Highest conversion of 10.3 mL H2/(g COD/L) was achieved at pH of 6.1 and glucose concentration of 3 g COD/L, whereas the highest production rate of 71 mL H2/(h L) was measured at pH 6.3 and substrate loading of 2.5 g COD/L. In general, there appears to be a strong trend of increasing hydrogen production rate with an increase in both substrate concentration and pH. Butyrate (14–63%), formate (10–45%) and ethanol (16–40%) were the main soluble products with other volatile fatty acids and alcohols present in smaller quantities.  相似文献   

8.
In this study, hydrogen gas was produced from starch feedstock via combination of enzymatic hydrolysis of starch and dark hydrogen fermentation. Starch hydrolysis was conducted using batch culture of Caldimonas taiwanensis On1 able to hydrolyze starch completely under the optimal condition of 55 °C and pH 7.5, giving a yield of 0.46–0.53 g reducing sugar/g starch. Five H2-producing pure strains and a mixed culture were used for hydrogen production from raw and hydrolyzed starch. All the cultures could produce H2 from hydrolyzed starch, whereas only two pure strains (i.e., Clostridium butyricum CGS2 and CGS5) and the mixed culture were able to ferment raw starch. Nevertheless, all the cultures displayed higher hydrogen production efficiencies while using the starch hydrolysate, leading to a maximum specific H2 production rate of 116 and 118 ml/g VSS/h, for Cl. butyricumCGS2 and Cl. pasteurianum CH5, respectively. Meanwhile, the H2 yield obtained from strain CGS2 and strain CH5 was 1.23 and 1.28 mol H2/mol glucose, respectively. The best starch-fermenting strain Cl. butyricum CGS2 was further used for continuous H2 production using hydrolyzed starch as the carbon source under different hydraulic retention time (HRT). When the HRT was gradually shortened from 12 to 2 h, the specific H2 production rate increased from 250 to 534 ml/g  VSS/h, whereas the H2 yield decreased from 2.03 to 1.50  mol H2/mol glucose. While operating at 2 h HRT, the volumetric H2 production rate reached a high level of 1.5 l/h/l.  相似文献   

9.
Biohydrogen has gained attention due to its potential as a sustainable alternative to conventional methods for hydrogen production. In this study, the effect of light intensity as well as cultivation method (standing- and shaking-culture) on the cell growth and hydrogen production of Rhodobacter sphaeroides ZX-5 were investigated in 38-ml anaerobic photobioreactor with RCVBN medium. Thus, a novel shaking and extra-light supplementation (SELS) approach was developed to enhance the phototrophic H2 production by R. sphaeroides ZX-5 using malate as the sole carbon source. The optimum illumination condition for shaking-culture by strain ZX-5 increased to 7000–8000 lux, markedly higher than that for standing-culture (4000–5000 lux). Under shaking and elevated illumination (7000–8000 lux), the culture was effective in promoting photo-H2 production, resulting in a 59% and 56% increase of the maximum and average hydrogen production rate, respectively, in comparison with the culture under standing and 4000–5000 lux conditions. The highest hydrogen-producing rate of 165.9 ml H2/l h was observed under the application of SELS approach. To our knowledge, this record is currently the highest hydrogen production rate of non-immobilized purple non-sulphur (PNS) bacteria. This optimal performance of photo-H2 production using SELS approach is a favorable choice of sustainable and economically feasible strategy to improve phototrophic H2 production efficiency.  相似文献   

10.
The present study investigated hydrogen production potential of novel marine Clostridium amygdalinum strain C9 isolated from oil water mixtures. Batch fermentations were carried out to determine the optimal conditions for the maximum hydrogen production on xylan, xylose, arabinose and starch. Maximum hydrogen production was pH and substrate dependant. The strain C9 favored optimum pH 7.5 (40 mmol H2/g xylan) from xylan, pH 7.5–8.5 from xylose (2.2–2.5 mol H2/mol xylose), pH 8.5 from arabinose (1.78 mol H2/mol arabinose) and pH 7.5 from starch (390 ml H2/g starch). But the strain C9 exhibited mixed type fermentation was exhibited during xylose fermentation. NaCl is required for the growth and hydrogen production. Distribution of volatile fatty acids was initial pH dependant and substrate dependant. Optimum NaCl requirement for maximum hydrogen production is substrate dependant (10 g NaCl/L for xylose and arabinose, and 7.5 g NaCl/L for xylan and starch).  相似文献   

11.
A hydrogen producing strain newly isolated from anaerobic sludge in an anaerobic bioreactor, was identified as Clostridium beijerinckii Fanp3 by 16S rDNA gene sequence analysis and detection by BioMerieux Vitek. The strain could utilize various carbon and nitrogen sources to produce hydrogen, which indicates that it has the potential of converting renewable wastes into hydrogen. In batch cultivations, the optimal initial pH of the culture medium was between 6.47 and 6.98. Using 0.15 M phosphate as buffer could alleviate the medium acidification and improve the overall performance of C. beijerinckii Fanp3 in hydrogen production. Culture temperature of 35 °C was established to be the most favorable for maximum rate of hydrogen production. The distribution of soluble metabolic products (SMP) was also greatly affected by temperature. Considering glucose as a substrate, the activation energy (Ea) for hydrogen production was calculated as 81.01 kcal/mol and 21.4% of substrate energy was recovered in the form of hydrogen. The maximal hydrogen yield and the hydrogen production rate were obtained as 2.52 mol/mol-glucose and 39.0 ml/g-glucose h−1, respectively. These results indicate that C. beijerinckii Fanp3 is an ideal candidate for the fermentative hydrogen production.  相似文献   

12.
This study reports a fermentative hydrogen production by Escherichia coli using cheese whey as substrate. To improve the biohydrogen production, an E. coli ΔhycA ΔlacI strain (WDHL) was constructed. The absence of hycA and lacI genes had a positive effect on the biohydrogen production. The strain produced 22% more biohydrogen in a shorter time than the wild-type (WT) strain. A Box-Behnken experimental design was used to optimize pH, temperature and substrate concentration. The optimal initial conditions for biohydrogen production by WDHL strain were pH 7.5, 37 °C and 20 g/L of cheese whey. The specific production rate was improved from 3.29 mL H2/optical density at 600 nm (OD600nm) unit-h produced by WDHL under non-optimal conditions to 5.88 mL H2/OD600nm unit-h under optimal conditions. Using optimal initial conditions, galactose can be metabolized by WDHL strain. The maximum yield obtained was 2.74 mol H2/mol lactose consumed, which is comparable with the yield reached in other hydrogen production processes with Clostridium sp. or mixed cultures.  相似文献   

13.
A mesophilic high hydrogen producing strain DMHC-10 was isolated from a lab scale anaerobic reactor being operated on distillery wastewater for hydrogen production. DMHC-10 was identified as Clostridium sp. on the basis of 16S rRNA gene sequencing. Various medium components (carbon and nitrogen sources) and environmental factors (initial pH, temperature of incubation) were optimized for hydrogen production by Clostridium sp. DMHC-10. The strain, in late exponential growth phase, showed maximum hydrogen production (3.35 mol-H2 mol−1 glucose utilized) at 37 °C, pH 5.0 in a medium supplemented with organic nitrogen source. Butyric acid to acetic acid ratio was ca. 2.3. Hydrogen production declined when organic nitrogen was replaced with inorganic nitrogen.  相似文献   

14.
This study investigated the effect of EDTA concentration in medium on the growth, hydrogen production and nitrogenase activity of Rhodopseudomonas faecalis RLD-53 by batch cultures. Experimental results indicated that bacterial growth and hydrogen production were strongly inhibited with EDTA concentration increasing to 0.6–0.7 g/L. However, the lag time of hydrogen production and the trends of biomass at EDTA concentration of 0–0.5 g/L were similar. The maximum cumulative hydrogen volume of 3325 ml H2/L culture, hydrogen production rate of 27.6 ml H2/L/h and hydrogen yield of 2.97 mol H2/mol acetate were obtained when EDTA concentration was at 0.3 g/L, and the maximum OD660 attained 3.83. And the nitrogenase activity also reached a maximum value of 1331.9 μl-C2H4/h/mg dry weight in the medium containing Fe2+ and EDTA. These results showed that a proper concentration of EDTA can promote the availability of iron, thereby further enhancing the activity of nitrogenase and photo-hydrogen production.  相似文献   

15.
This study evaluated hydrogen production by co-culture of Ethanoligenens harbinense B49 and immobilized Rhodopseudomonas faecalis RLD-53 with different control strategies. To enhance cooperation of dark and photo-fermentation bacteria during hydrogen production process, the glucose concentration, phosphate buffer concentration and initial pH were controlled at 6 g/l, 50 mmol/l and 7.5, respectively. The maximum yield and rate of hydrogen production were 3.10 mol H2/mol glucose and 17.2 mmol H2/l/h, respectively. Ethanol from E. harbinense B49 in acetate medium can enhance hydrogen production by R. faecalis RLD-53 except the ratio of ethanol to acetate (RE/A) among 0.8 to 1.0. Control of the proper phosphate buffer concentration (50 mmol/l) not only increased acetic acid production by E. harbinense B49, but also maintained stable pH of co-culture system. Therefore, the results showed that co-culture of E. harbinense B49 and immobilized R. faecalis RLD-53 was a promising way of converting glucose into hydrogen.  相似文献   

16.
In this study, H2 was produced from cheese whey wastewater in a two-stage biological process: i) first stage; thermophilic dark fermentation ii) second stage; the photo fermentation using Rhodopseudomonas palustris strain DSM 127 (R. palustris). The effect of both dilution and addition of l-malic acid on the hydrogen production was investigated. Among the dilution rates used, 1/5 dilution ratio was found to produce the best hydrogen production (349 ml H2/g CODfed). On the other hand, It was seen that the mixing the effluent with l-malic acid at increasing ratios had further positive effect and improved the hydrogen production significantly. It was concluded that dilution of the feeding helps to reduce the nitrogen content and the volatile fatty acid content that might be otherwise harmful to the photo-heterotrophic organisms. Overall hydrogen production yield (for dark + photo fermentation) was found to vary 2 and 10 mol H2/mol lactose. Second conclusion is that cheese whey effluent should be mixed with a co-substrate containing l-malic acid such as apple juice processing effluents before fed into the photo fermentation reactor.  相似文献   

17.
A thermotolerant fermentative hydrogen-producing strain was isolated from crude glycerol contaminated soil and identified as Klebsiella pneumoniae on the basis of the 16S rRNA gene analysis as well as physiological and biochemical characteristics. The selected strain, designated as K. pneumoniae TR17, gave good hydrogen production from crude glycerol. Culture conditions influencing the hydrogen production were investigated. The strain produced hydrogen within a wide range of temperature (30–50 °C), initial pH (4.0–9.0) and crude glycerol concentration (20–100 g/L) with yeast extract as a favorable nitrogen source. In batch cultivation, the optimal conditions for hydrogen production were: cultivation temperature at 40 °C, initial pH at 8.0, 20 g/L crude glycerol and 2 g/L yeast extract. This resulted in the maximum cumulative hydrogen production of 27.7 mmol H2/L and hydrogen yield of 0.25 mol H2/mol glycerol. In addition, the main soluble metabolites were 1,3-propanediol, 2,3-butanediol and ethanol corresponding to the production of 3.52, 2.06 and 3.95 g/L, respectively.  相似文献   

18.
In this study, the photosynthetic hydrogen production rates by some strains of green microalgae were investigated. Three strains of Chlorella isolated from arid soil and foggaras's water in the Algerian Sahara were used. Chlorella sorokiniana strain Ce, Chlorella salina strain Mt and Chlorella sp strain Pt6 produced hydrogen gas under sulphur-deprived conditions, but its rate was dependent on strain type and oxygen partial pressure in medium. In C. sorokiniana strain Ce, the maximum value of hydrogen accumulated was 147 ml at 222 h at 2% of O2 pressure. Compared to C. sorokiniana strain Ce, C. salina strain Mt and Chlorella sp strain Pt6 produced less amount of hydrogen, but they were able to sustain with an O2 partial pressure of up to 11–15.4%. Our data were compared with hydrogen production by Chlamydomonas reinhardtii. In this communication, the relationship between physiological behaviour, biochemical characteristic (starch and protein) and rates gas production (O2 and H2) was also specified.  相似文献   

19.
A new fermentative hydrogen-producing bacterium was isolated from a domestic landfill and identified as Enterobacter asburiae using 16S rRNA gene sequencing and DNA–DNA hybridization methods. The isolated bacterium, designated as Enterobacter asburiae SNU-1, is a new species that has never been examined as a potential hydrogen-producing bacterium. This study examined the hydrogen-producing ability of Enterobacter asburiae SNU-1. During fermentation, the hydrogen was mainly produced in the stationary phase. The hydrogen yield based on the formate consumption was 0.43 mol hydrogen/mol formate. This strain was able to produce hydrogen over a wide range of pH (4–7.5), with the optimum pH being pH 7. The level of hydrogen production was also affected by the initial glucose concentration, and the optimum value was found to be 25 g glucose/l. The maximum and overall hydrogen productivities were 398 and 174 ml/l/hr, respectively, at pH 7 with an initial glucose concentration of 25 g/l. This strain could produce hydrogen from glucose and many other carbon sources such as fructose, sucrose, and sorbitol.  相似文献   

20.
Statistical experimental designs were applied for the optimization of medium constituents for hydrogen production from xylose by newly isolated Enterobacter sp. CN1. Using Plackett–Burman design, xylose, FeSO4 and peptone were identified as significant variables which highly influenced hydrogen production. The path of steepest ascent was undertaken to approach the optimal region of the three significant factors. These variables were subsequently optimized using Box–Behnken design of response surface methodology (RSM). The optimum conditions were found to be xylose 16.15 g/L, FeSO4 250.17 mg/L, peptone 2.54 g/L. Hydrogen production at these optimum conditions was 1149.9 ± 65 ml H2/L medium. Under different carbon sources condition, the cumulative hydrogen volume were 1217 ml H2/L xylose medium, 1102 ml H2/L glucose medium and 977 ml H2/L sucrose medium; the maximum hydrogen yield were 2.0 ± 0.05 mol H2/mol xylose, 0.64 mol H2/mol glucose. Fermentative hydrogen production from xylose by Enterobacter sp. CN1 was superior to glucose and sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号