首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Maintenance of good indoor air quality for residences could be very challenging. Episodic event such as cooking emits a large amount of ultrafine and supermicron particles. A numerical model is used to simulate a 10-min cooking process in a real room, followed by a few more minutes to allow the decay and removal of particles. Particle dispersion and deposition in the kitchen and the living room are simulated by a new drift-flux model. Strong buoyancy flow is observed and particle concentration is significantly affected by the thermal plume. Results show that for supermicron particles strong non-uniformity of concentration is observed in the kitchen but the non-uniformity is less obvious in the living room. Exposure analysis must take into account the influence of the particle sizes.  相似文献   

2.
We studied the effect of ventilation and air filtration systems on indoor air quality in a children's day-care center in Finland. Ambient air nitrogen oxides (NO, NO2) and particles (TSP, PM10) were simultaneously measured outdoors and indoors with automatic nitrogen oxide analyzers and dust monitoring. Without filtration nitrogen oxides and particulate matter generated by nearby motor traffic penetrated readily indoors. With chemical filtration 50-70% of nitrogen oxides could be removed. Mechanical ventilation and filtration also reduced indoor particle levels. During holidays and weekends when there was no opening of doors and windows and no particle-generating activity indoors, the indoor particle level was reduced to less than 10% of the outdoor level. At times when outdoor particle concentrations were high during weekdays, the indoor level was about 25% of the outdoor level. Thus, the possible adverse health effects of nitrogen oxides and particles indoors could be countered by efficient filtration. We also showed that inclusion of heat recovery equipment can make new ventilation installations economical.  相似文献   

3.
The objective of this study is to test a technique used to analyze contaminant transport in the wake of a bluff body under controlled experimental conditions for application to aerosol transport in a complex furnished room. Specifically, the hypothesis tested by our work is that the dispersion of contaminants in a room is related to the turbulence kinetic energy and length scale. This turbulence is, in turn, determined by the size and shape of furnishings within the room and by the ventilation characteristics. This approach was tested for indoor dispersion through computational fluid dynamics simulations and laboratory experiments. In each, 3 mum aerosols were released in a furnished room with varied contaminant release locations (at the inlet vent or under a desk). The realizable k approximately epsilon model was employed in the simulations, followed by a Lagrangian particle trajectory simulation used as input for an in-house FORTRAN code to compute aerosol concentration. For the experiments, concentrations were measured simultaneously at seven locations by laser photometry, and air velocity was measured using laser Doppler velocimetry. The results suggest that turbulent diffusion is a significant factor in contaminant residence time in a furnished room. This procedure was then expanded to develop a simplified correlation between contaminant residence time and the number of enclosing surfaces around a point containing the contaminant. Practical Implications The work presented here provides a methodology for relating local aerosol residence time to properties of room ventilation and furniture arrangement. This technique may be used to assess probable locations of high concentration by knowing only the particle release location, furniture configuration, inlet and outlet locations, and air speeds, which are all observable features. Applications of this method include development of 'rules of thumb' for first responders entering a room where an agent has been released and selection of sampler locations to monitor conditions in sensitive areas.  相似文献   

4.
Monitoring of aerosols is typically performed over 3 h to diurnal time scales for outdoor concentration levels and 15 min to 8 h scales indoors. At these scales, concentration is assumed to be well mixed with little spatio-temporal variability around the sampler. Less attention has been given to the potential for acute exposure to contaminants during the initial minutes after a point-source release, where point-wise concentrations may greatly exceed the well-mixed conditions. Here, we seek to demonstrate that the commonly used well-mixed assumption is flawed in the first minutes after a contaminant is released because point-wise concentration levels are initially highly non-uniform and are influenced by turbulent structures caused by the presence of obstacles in the room. This assumption was examined by releasing 3 μm aerosols in a test room with HEPA filter ventilation and by varying controlled conditions of room furnishings (furnished vs. unfurnished) and contaminant release locations (at the inlet vent or under a desk). For each experiment, aerosol concentrations were measured simultaneously at seven locations by nephelometry. Complementary computational fluid dynamics simulations were performed to lend confidence to the experiments and to provide detailed pictures of the velocity and particle concentration profiles. The experimental and numerical results corroborated the hypothesis. For both release locations in the furnished room, a completely well-mixed condition did not occur 600 s after the release, and aerosol dispersion was dictated by the turbulent airflow pattern. For the empty room, there was significantly less spatial variability in the point-wise measured concentrations after 300 s than for the furnished room. This information may aid in evaluating the potential for occupant exposure to aerosolized hazardous substances and in supporting optimization of detector placement.  相似文献   

5.
Afshari A  Matson U  Ekberg LE 《Indoor air》2005,15(2):141-150
Humans and their activities are known to generate considerable amounts of particulate matter indoors. Some of the activities are cooking, smoking and cleaning. In this study 13 different particle sources were for the first time examined in a 32 m3 full-scale chamber with an air change rate of 1.7 +/- 0.1/h. Two different instruments, a condensation particle counter (CPC) and an optical particle counter (OPC) were used to quantitatively determine ultrafine and fine particle emissions, respectively. The CPC measures particles from 0.02 microm to larger than 1.0 microm. The OPC was adjusted to measure particle concentrations in eight fractions between 0.3 and 1.0 microm. The sources were cigarette side-stream smoke, pure wax candles, scented candles, a vacuum cleaner, an air-freshener spray, a flat iron (with and without steam) on a cotton sheet, electric radiators, an electric stove, a gas stove, and frying meat. The cigarette burning, frying meat, air freshener spray and gas stove showed a particle size distribution that changed over time towards larger particles. In most of the experiments the maximum concentration was reached within a few minutes. Typically, the increase of the particle concentration immediately after activation of the source was more rapid than the decay of the concentration observed after deactivation of the source. The highest observed concentration of ultrafine particles was approximately 241,000 particles/cm3 and originated from the combustion of pure wax candles. The weakest generation of ultrafine particles (1.17 x 10(7) particles per second) was observed when ironing without steam on a cotton sheet, which resulted in a concentration of 550 particles/cm3 in the chamber air. The highest generation rate (1.47 x 10(10) particles per second) was observed in the radiator test. PRACTICAL IMPLICATIONS: Humans and their activities are known to generate substantial amounts of particulate matter indoors and potentially they can have a strong influence on short-term exposure. In this study a quantitative determination of the emissions of fine and ultrafine particles from different indoor sources was performed. The aim is a better understanding of the origin and fate of indoor particles. The results may be useful for Indoor Air Quality models.  相似文献   

6.
Subways are used widely for public transportation in major cities and require efficient ventilation systems to maintain indoor air quality in the subway tunnel. A subway tunnel was investigated numerically and experimentally to reduce the particle concentration in subway tunnels. The subway tunnel is 54-m long, 1.65-m high, and 2.5-m wide. The subway tunnel is one-quarter scale of a real subway tunnel. The tunnel has two U-type mechanical ventilation shafts. The steady three-dimensional airflow in the tunnel was analyzed using ANSYS CFX software to solve the Reynolds-averaged Navier–Stokes equations. The airflow in the tunnel and shafts was observed numerically using the train-wind and air-curtain. The effects of the train-wind, air-curtain, and electric precipitator were examined experimentally. The ventilation performance in the subway tunnel was observed with respect to the particle concentration in the tunnel. The numerical results suggest proper operating conditions for experimental analysis of the particle concentration. The average velocity of the airflow increases in the shaft when the velocity of the air-curtain increases. The particle concentration at the dust monitoring device after ventilation shaft 1 was reduced significantly in the tunnel when the air-curtain and train-wind were operated.  相似文献   

7.
A study was performed to characterize the concentration of dozens of volatile organic compounds (VOCs) at 10 locations within a single large building and track these concentrations over a 2-year period. The study was performed at a shopping center (strip mall) in New Jersey. A total of 130 indoor air samples were collected from 10 retail stores within the shopping center and analyzed for 60 VOCs by US EPA Method TO-15. Indoor concentrations of up to 55,100 microg/m(3) were measured for individual VOCs. The indoor/outdoor ratio (I/O) was as high as 1500 for acetone and exceeded 100 at times for various compounds, indicating that significant indoor air sources were present. A large degree of spatial variability was observed between stores within the building, with concentrations varying by three to four orders of magnitude for some compounds. The spatial variability was dependent on the proximity of the sampling locations to the indoor sources. A large degree of temporal variability also was observed for compounds emitted from indoor sources, but the temporal variability generally did not exceed two standard deviations (sigma). For compounds not emitted from indoor sources at significant rates, both the spatial and temporal variability tended to range within an order of magnitude at each location. PRACTICAL IMPLICATIONS: Many cross-sectional studies have been published where the levels of volatile organic compounds (VOCs) were measured in indoor air at one or two locations for houses or offices. This study provides longitudinal data for a commercial retail building and also addresses spatial variability within the building. The data suggest that spatial and temporal variability are important considerations for compounds emitted from indoor sources. Elevated concentrations were found in retail spaces with no apparent emission sources due to their proximity to other retail spaces with emission sources.  相似文献   

8.
Mendell MJ 《Indoor air》2007,17(4):259-277
Most research into effects of residential exposures on respiratory health has focused on allergens, moisture/mold, endotoxin, or combustion products. A growing body of research from outside the US; however, has associated chemical emissions from common indoor materials with risk of asthma, allergies, and pulmonary infections. This review summarizes 21 studies in the epidemiologic literature on associations between indoor residential chemical emissions, or emission-related materials or activities, and respiratory health or allergy in infants or children. Associations, some strong, were reported between many risk factors and respiratory or allergic effects. Risk factors identified most frequently included formaldehyde or particleboard, phthalates or plastic materials, and recent painting. Findings for other risk factors, such as aromatic and aliphatic chemical compounds, were limited but suggestive. Elevated risks were also reported for renovation and cleaning activities, new furniture, and carpets or textile wallpaper. Reviewed studies were entirely observational, limited in size, and variable in quality, and specific risk factors identified may only be indicators for correlated, truly causal exposures. Nevertheless, overall evidence suggests a new class of residential risk factors for adverse respiratory effects, ubiquitous in modern residences, and distinct from those currently recognized. It is important to confirm and quantify any risks, to motivate and guide necessary preventive actions. PRACTICAL IMPLICATIONS: Composite wood materials that emit formaldehyde, flexible plastics that emit plasticizers, and new paint have all been associated with increased risks of respiratory and allergic health effects in children. Although causal links have not been documented, and other correlated indoor-related exposures may ultimately be implicated, these findings nevertheless point to a new class of little recognized indoor risk factors for allergic and respiratory disease, distinct from the current set of indoor risk factors. The available evidence thus raises initial questions about many common residential practices: for instance, using pressed wood furnishings in children's bedrooms, repainting infant nurseries, and encasing mattresses and pillows with vinyl for asthmatic children. The findings summarized here suggest a need for substantially increased research to replicate these findings, identify causal factors, and validate preventive strategies.  相似文献   

9.
The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single‐family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2, were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings.  相似文献   

10.
Abstract Various studies on indoor and outdoor particulate matter in the urban environment in the vicinity of busy arterial roads in the centre of the subtropical city of Brisbane have indicated that the revised United States Environmental Protection Agency National Ambient Air Quality Standards (US EPA NAAQS) for Particulate matter PM2.5 could be exceeded not only outdoors but also indoors. The aim of this work was to investigate outdoor exposure to submicrometer particles and their relationship with indoor exposure in a hypothetical office building located in the vicinity of a busy arterial road. The outdoor exposure values and trends were measured in terms of particle number in the submicrometer size range and were then recalculated to represent mass concentration trends. The results of this study indicate that exposure to PM0.7 particles in ambient air close to a busy road often exceeds the levels of the annual and 24-hour US EPA NAAQS PM2.5 standards. It is likely that exposure to PM2.5 is even higher, and may significantly exceed these standards.  相似文献   

11.
室内有机化学污染防治研究现状及存在问题   总被引:1,自引:0,他引:1  
指出了室内有机化学污染防治的重要性,分析了近年来国内外关于室内有机化学污染防治的研究现状,根据其中存在的问题,针对污染防治的三种方式(源头治理、改善空间传输和空气净化)提出了一些近期值得讨论和研究的问题,旨在引起相关领域研究者的共同关注,加大这些方面的研究力度,以提供解决我国室内化学污染问题的有力技术支持。  相似文献   

12.
The indoor environmental quality (IEQ) in residential buildings is examined from the prospect of an occupant's acceptance in four aspects: thermal comfort, indoor air quality, noise level and illumination level. Based on the evaluations by 125 occupants living in 32 typical residential apartments in Hong Kong, this study proposes empirical expressions to approximate the overall IEQ acceptance with respect to four contributors, namely operative temperature, carbon dioxide concentration, equivalent noise level and illumination level, via a multivariate logistic regression model. A range of IEQ acceptances for regular residential conditions is determined and the dependence of the predicted overall IEQ acceptance on the variations of the contributors is discussed. The proposed overall IEQ acceptance can be used as a quantitative assessment criterion for similar residential environments where an occupant's evaluation is expected.  相似文献   

13.
Ventilation effectiveness is an indicator of the quality of supply air distribution in ventilated rooms. It is a representation of how well a considered space is ventilated compared to a perfect air mixing condition. Depending on pollutant properties and source position relative to the airflow, ventilation effectiveness can more or less successfully be used as an indicator of air quality and human exposure. This paper presents an experimentally and numerically based study that examines the relationship between ventilation effectiveness and particle concentration in typical indoor environments. The results show that the relationship varies predominantly with airflow pattern and particle properties. Fine particles (1 μm) follow the airflow pattern more strictly than coarse particles (7 μm), and the high ventilation effectiveness indicates better removal of fine particles than coarse particles. When a ventilation system provides high mixing in the space and ventilation effectiveness is close to one, particle sizes and source location have a relatively small effect on particle concentration in the breathing zone. However, when the supply air is short circuited and large stagnation zones exist within the space, the particle concentration in the breathing zone varies with particle size, source location, and airflow pattern. Generally, the results show that for fine particles (1 μm), increase of ventilation effectiveness reduces occupant exposure; while for coarser particles (7 μm), source location and airflow around the pollutant source are the major variables that affect human exposure.  相似文献   

14.
Litvak A  Gadgil AJ  Fisk WJ 《Indoor air》2000,10(1):47-56
A portion of electronic equipment failures is a consequence of particle deposition on electronic circuits in normal indoor environments. Deposited hygroscopic particles reduce the electrical isolation (EI) between conductors. In laboratory experiments, we investigated the mechanisms, locations, and effects of particle deposition on electronic circuits with surface mounted chips (SMCs) and also on small television sets. One set of electronics was exposed for 281 h to an unusually high concentration of artificially-generated ammonium sulfate particles while a second set (experimental controls) was exposed to normal indoor particles. The particle mass concentration in the high-exposure chamber was 500 times higher than normal. Television reliability was observed and the changes in EI between adjacent legs of SMCs were measured. The experiments demonstrate the strong influence of electrostatic forces on the locations and rates of particle deposition. Although televisions did not fail after exposure to concentrated aerosols, the EI between adjacent legs of the SMCs was, in many cases, greatly diminished. Relative humidity had a very strong influence on the magnitude of EI. A qualitative explanation of the mechanisms of particle deposition and circuit degradation is proposed, including the role of fibers. Finally, a potential method to reduce particle deposition on electronic components is discussed.  相似文献   

15.
Leech JA  Raizenne M  Gusdorf J 《Indoor air》2004,14(3):169-173
A prospective telephone-administered questionnaire study in new home occupants compared general and respiratory health at occupancy and 1 year later in two groups. The test group or cases, was 52 R-2000(TM) homes (128 occupants) built to preset and certified criteria for energy efficient ventilation and construction practices. The control group were 53 new homes (149 occupants) built in the same year in the same geographic area and price range. Analyzed by household, case occupants' summative symptom scores improved significantly over the year of occupancy (Wilcoxon rank sum test, P < 0.006). Analysis of variance of individuals' total symptom scores showed a significant effect of the type of house (P < 0.0001), with lower change of scores in case buildings, but not of age or sex. In comparison with control homes, occupants of case homes reported more improvement in throat irritation (P < 0.004), cough (P < 0.002), fatigue (P < 0.009) and irritability (P < 0.002) with the main change in symptom category being from 'sometimes' to 'never'. Further extension of this pilot study is required to determine if these perceived health benefits are reproducible and/or relate to objective indoor air quality measures. PRACTICAL IMPLICATIONS: New occupants of energy efficient homes with heat recovery ventilators report improvement over 1 year in the symptoms of throat irritation, cough, fatigue, and irritability in comparison with control new home occupants. If this pilot study is reproducible and shown to relate to indoor air quality, prospective new home buyers may be interested in obtaining this health information prior to decision making.  相似文献   

16.
向东  杜震宇 《山西建筑》2003,29(12):126-127
结合多年设计和实践经验 ,对厨房污染物的产生途径作了分析 ,提出了防治厨房空气污染 ,须采取污染源控制、加强通风、净化空气、改变生活习惯和走出建筑设计误区的综合措施。  相似文献   

17.
采用雷诺时均的Navier-Stokes方程与标准κ-ε双方程模型,对常用的3种侧送风方式下的办公建筑进行数值模拟,对室内空气的速度场、温度场以及空气龄进行分析,认为送回风同侧的通风方式优于送回风对侧的通风方式,可获得较高的室内空气品质。  相似文献   

18.
The ability to inexpensively monitor PM2.5 to identify sources and enable controls would advance residential indoor air quality (IAQ) management. Consumer IAQ monitors incorporating low‐cost optical particle sensors and connections with smart home platforms could provide this service if they reliably detect PM2.5 in homes. In this study, particles from typical residential sources were generated in a 120 m3 laboratory and time‐concentration profiles were measured with 7 consumer monitors (2‐3 units each), 2 research monitors (Thermo pDR‐1500, MetOne BT‐645), a Grimm Mini Wide‐Range Aerosol Spectrometer (GRM), and a Tapered Element Oscillating Microbalance with Filter Dynamic Measurement System (FDMS), a Federal Equivalent Method for PM2.5. Sources included recreational combustion (candles, cigarettes, incense), cooking activities, an unfiltered ultrasonic humidifier, and dust. FDMS measurements, filter samples, and known densities were used to adjust the GRM to obtain time‐resolved mass concentrations. Data from the research monitors and 4 of the consumer monitors—AirBeam, AirVisual, Foobot, Purple Air—were time correlated and within a factor of 2 of the estimated mass concentrations for most sources. All 7 of the consumer and both research monitors substantially under‐reported or missed events for which the emitted mass was comprised of particles smaller than 0.3 μm diameter.  相似文献   

19.
The biologically relevant characteristics of particulate matter (PM) in homes are important to assessing human health. The concentration of particulate reactive oxygen species (ROS) was assessed in eight homes and was found to be lower inside (mean ± s.e. = 1.59 ± 0.33 nmol/m3) than outside (2.35 ± 0.57 nmol/m3). Indoor particulate ROS concentrations were substantial and a major fraction of indoor particulate ROS existed on PM2.5 (58 ± 10%), which is important from a health perspective as PM2.5 can carry ROS deep into the lungs. No obvious relationships were evident between selected building characteristics and indoor particulate ROS concentrations, but this observation would need to be verified by larger, controlled studies. Controlled experiments conducted at a test house suggest that indoor ozone and terpene concentrations substantially influence indoor particulate ROS concentrations when outdoor ozone concentrations are low, but have a weaker influence on indoor particulate ROS concentrations when outdoor ozone concentrations are high. The combination of substantial indoor concentrations and the time spent indoors suggest that further work is warranted to assess the key parameters that drive indoor particulate ROS concentrations.  相似文献   

20.
Nowadays, with the improvement of living standards, air-conditioning systems have been widely used causing more health problems linked to air-conditioning systems and indoor air quality. When an air handling unit is designed for a conference room, its variable use demands an outdoor air rate control in particular to optimize energy consumption of the new air heating/cooling. Based on an experimental site, the present work shows how to combine air quality and the improvement of energy consumption thanks to a way to define a control strategy. The control problem considered here is the management of air quality associated to a control of the outdoor air rates. A review of classical tuning methods is led in order to select suitable ones. Thus, a linearization of the phenomena must be done to border the system expression in tuning methods. Several classical methods are studied and the family model is chosen: monovariable and multivariable applications are brought to fruition. Simulations and applications permit to enhance energy consumption through the choice of a strict way to tune such control equipments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号