首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable-isotope dimethyl labeling for quantitative proteomics   总被引:1,自引:0,他引:1  
Hsu JL  Huang SY  Chow NH  Chen SH 《Analytical chemistry》2003,75(24):6843-6852
In this paper, we report a novel, stable-isotope labeling strategy for quantitative proteomics that uses a simple reagent, formaldehyde, to globally label the N-terminus and epsilon-amino group of Lys through reductive amination. This labeling strategy produces peaks differing by 28 mass units for each derivatized site relative to its nonderivatized counterpart and 4 mass units for each derivatized isotopic pair. This labeling reaction is fast (less than 5 min) and complete without any detectable byproducts based on the analysis of MALDI and LC/ESI-MS/MS spectra of both derivatized and nonderivatized peptide standards and tryptic peptides of hemoglobin molecules. The intensity of the a(1) and y(n-1) ions produced, which were not detectable from most of the nonderivatized fragments, was substantially enhanced upon labeling. We further tested the method based on the analysis of an isotopic pair of peptide standards and a pair of defined protein mixtures with known H/D ratios. Using LC/MS for quantification and LC/MS/MS for peptide sequencing, the results show a negligible isotopic effect, a good mass resolution between the isotopic pair, and a good correlation between the experimental and theoretical data (errors 0-4%). The relative standard deviation of H/D values calculated from peptides deduced from the same protein are less than 13%. The applicability of the method for quantitative protein profiling was also explored by analyzing changes in nuclear protein abundance in an immortalized E7 cell with and without arsenic treatment.  相似文献   

2.
Fast mapping of disulfide bonds in proteins containing multiple cysteine residues is often required in order to assess the integrity of the tertiary structure of proteins prone to degradation and misfolding or to detect distinct intermediate states generated in the course of oxidative folding. A new method of rapid detection and identification of disulfide-linked peptides in complex proteolytic mixtures utilizes the tendency of collision-activated peptide ions to lose preferentially side chains of select amino acids in the negative ion mode. Cleavages of cysteine side chains result in efficient dissociation of disulfide bonds and produce characteristic signatures in the fragment ion mass spectra. While cleavages of other side chains result in insignificant loss of mass and full retention of the peptide ion charge, dissociation of external disulfide bonds results in physical separation of two peptides and, therefore, significant changes of both mass and charge of fragment ions relative to the precursor ion. This feature allows the fragment ions generated by dissociation of external disulfide bonds to be easily detected and identified even if multiple precursor ions are activated simultaneously. Such broadband selection of precursor ions for consecutive activation is achieved by lowering the dc/rf amplitude ratio in the first quadrupole filter of a hybrid quadrupole time-of-flight mass spectrometer. The feasibility of the new method is demonstrated by partial mapping of disulfide bridges within a 37-kDa protein containing 16 cysteine residues and complete disulfide mapping within a lysozyme (14.5 kDa) containing 8 cysteine residues. In addition to detecting peptide pairs connected by a single external disulfide, the new method is also shown to be capable of identifying peptides containing both external and internal disulfide bonds. The two major factors determining the efficiency of disulfide mapping using the new methodology are the effectiveness of proteolysis and the ability of the resulting proteolytic fragments to form multiply charged negative ions.  相似文献   

3.
Chan TW  Duan L  Sze TP 《Analytical chemistry》2002,74(20):5282-5289
A new analytical scheme based on a combination of scanning FTMS, multiple-ion filling, and potential ramping methods has been developed for accurate molecular mass measurement of peptide and protein mixtures using broadband MALDI-FTMS. The scanning FTMS method alleviates the problems of time-of-flight effect for FTMS with an external MALDI ion source and provides a systematic means of sampling ions of different mass-to-charge ratios. The multiple-ion filling method is an effective way of trapping and retaining ions from successive ion generation/accumulation events. The potential ramping method allows the use of high trapping potentials for effective trapping of ions of high kinetic energies and the use of low trapping potentials for high-resolution detection of the trapped ions. With this analytical scheme, high-resolution broadband MALDI mass spectra covering a wide mass range of 1000-5700 Da were obtained. For peptide mixtures of mass range 1000-3500 Da, calibration errors of low part-per-millions were demonstrated using a parabolic calibration equation f2 = ML1/m2 + ML2/m + ML3, where f is the measured cyclotron frequency and ML1, ML2, and ML3 are calibration constants.  相似文献   

4.
Fragmentation of multiple peptides in a single tandem mass scan impairs accuracy of isobaric mass tag based quantification. Consequently, practitioners aim at fragmenting peptide ions with the highest possible purity without compromising on sensitivity and coverage achieved in the experiment. Here we report the first systematic study optimizing delayed fragmentation options on Orbitrap instruments. We demonstrate that by delaying peptide fragmentation to occur closer to the apex of the chromatographic peak in liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments cofragmentation is reduced by 2-fold and peptides are fragmented with 2.8-fold better signal-to-noise ratios. This results in significantly improved accuracy of isobaric mass tag quantification. Further, we measured cofragmentation dependence on isolation width. In comparison to Orbitrap XL instruments the reduced space charging in the Orbitrap Velos enables isolation widths as narrow as 1 Th without impairing coverage, thus substantially reducing cofragmentation. When delayed peptide fragmentation and narrow isolation width settings were both applied, cofragmentation-induced ratio compression could be reduced by 32% on a log2 scale under otherwise identical conditions.  相似文献   

5.
We report here the application of electrospray ionization tandem mass spectrometry for the characterization of protein ubiquitylation, an important posttranslational modification of cellular proteins. Trypsin digestion of ubiquitin-conjugated proteins produces diglycine branched peptides containing the modification sites. Chemical derivatization by N-terminal sulfonation was carried out on several model peptides for the formation of a characteristic fragmentation pattern in their MS/MS analysis. The fragmentation of derivatized singly charged peptides results in a product ion distribution similar to that already observed by MALDI-TOF MS/MS. Signature fragments distinguished the diglycine branched peptides from other modified and unmodified peptides, while the sequencing product ions reveal the amino acid sequence and the location of the ubiquitylation site. Doubly charged peptide derivatives fragment in a somewhat different manner, but several fragments characteristic to diglycine branched peptides were observed under low collision energy conditions. These signature peaks can also be used to identify peptides containing ubiquitylation sites. In addition, a marker ion corresponding to a glycine-modified lysine residue produced by high-energy fragmentation provides useful information for identity verification. The method is demonstrated by the analysis of three ubiquitin-conjugated proteins using LC/MS/MS.  相似文献   

6.
A novel MS/MS-based analysis strategy using isotopomer labels, referred to as "tandem mass tags" (TMTs), for the accurate quantification of peptides and proteins is described. The new tags are designed to ensure that identical peptides labeled with different TMTs exactly comigrate in all separations. The tags require novel methods of quantification analysis using tandem mass spectrometry. The new tags and analysis methods allow peptides from different samples to be identified by their relative abundance with greater ease and accuracy than other methods. The new TMTs permit simultaneous determination of both the identity and relative abundances of peptide pairs using a collision induced dissociation (CID)-based analysis method. Relative abundance measurements made in the MS/MS mode using the new tags are accurate and sensitive. Compared to MS-mode measurements, a very high signal-to-noise ratio is achieved with MS/MS based detection. The new tags should be applicable to a wide variety of peptide isolation methods.  相似文献   

7.
Gu S  Pan S  Bradbury EM  Chen X 《Analytical chemistry》2002,74(22):5774-5785
Here, we describe a method for protein identification and de novo peptide sequencing. Through in vivo cell culturing, the deuterium-labeled lysine residue (Lys-d4) introduces a 4-Da mass tag at the carboxyl terminus of proteolytic peptides when cleaved by certain proteases. The 4-Da mass difference between the unlabeled and the deuterated lysine assigns a mass signature to all lysine-containing peptides in any pool of proteolytic peptides for protein identification directly through peptide mass mapping. Furthermore, it was used to distinguish between N- and C-terminal fragments for accurate assignments of daughter ions in tandem MS/MS spectra for sequence assignment. This technique simplifies the labeling scheme and the interpretation of the MS/MS spectra by assigning different series of fragment ions correctly and easily and is very useful in de novo peptide sequencing. We have also successfully implemented this approach to the analysis of protein mixtures derived from the human proteome.  相似文献   

8.
Modern mass spectrometry (MS)-based protein identification and characterization relies upon accurate mass measurements of the (13)C isotopic distributions of the enzymatically produced peptides. Interestingly, obtaining peptide elemental composition information from its isotopic fine structure mass spectrum to increase the confidence in peptide and protein identification has not yet been developed into a bottom-up proteomics-grade analytical approach. Here, we discuss the possible utility and limitations of the isotopic fine structure MS for peptide and protein identification. First, we in silico identify the peptides from the E. coli tryptic digest and show the increased confidence in peptide identification by consideration of the isotopic fine structures of these peptides as a function of mass and abundance accuracies. In the following, we demonstrate that the state-of-the-art high magnetic field Fourier transform ion cyclotron resonance (FT-ICR) MS allows a routine acquisition of the isotopic fine structure information of a number of isobaric peptide pairs, including a pair of peptides originating from E. coli. Finally, we address the practical limitation of the isotopic fine structure MS implementation in the time-constraint experiments by applying an advanced signal processing technique, filter diagonalization method, to the experimental transients to overcome the resolution barrier set by the typically applied Fourier transformation. We thus demonstrate that the isotopic fine structures of peptides may indeed improve the peptide and possibly protein identification, can be produced in a routine experiment by the state-of-the-art high resolution mass spectrometers, and can be potentially obtained on a chromatographic time-scale of a typical bottom-up proteomics experiment. The latter one requires at least an order of magnitude increase in sensitivity of ion detection, which presumably can be realized using high-field Orbitrap FTMS and/or future generation of ultrahigh magnetic field FT-ICR MS equipped with harmonized ICR cells.  相似文献   

9.
A novel ion trap time-of-flight hybrid mass spectrometer (qIT-TOF MS) has been applied for peptide sequencing in proteolytic digests generated from spore mixtures of Bacilli. The method of on-probe solubilization and in situ proteolytic digestion of small, acid-soluble spore proteins has been recently developed in our laboratory, and microorganism identification in less than 20 min was accomplished. In this study, tryptic peptides were generated in situ from complex spore mixtures of B. subtilis 168, B. globigii, B. thuringiensis subs. Kurstaki, and B. cereus T, respectively. MALDI analysis of bacterial peptides generated was performed with an average mass resolving power of 6200 and a mass accuracy of up to 10 ppm using a trap-TOF tandem configuration. Precursor ions of interest were usually selected and stored in the quadrupole ion trap with their complete isotope distribution by choosing a window of +/- 2 Da. Sequence-specific information on isolated protonated peptides was gained via tandem MS experiments with an average mass resolving power of 4450 for product ion analysis, and protein and bacterial sources were identified by database searching.  相似文献   

10.
Electron capture dissociation (ECD) has previously been shown by other research groups to result in greater peptide sequence coverage than other ion dissociation techniques and to localize labile posttranslational modifications. Here, ECD has been achieved for 10-13-mer peptides microelectrosprayed from 10 nM (10 fmol/microL) solutions and for tryptic peptides from a 50 nM unfractionated digest of a 28-kDa protein. Tandem Fourier transform ion cyclotron resonance (FTICR) mass spectra contain fragment ions corresponding to cleavages at all possible peptide backbone amine bonds, except on the N-terminal side of proline, for substance P and neurotensin. For luteinizing hormone-releasing hormone, all but two expected backbone amine bond cleavages are observed. The tandem FTICR mass spectra of the tryptic peptides contain fragment ions corresponding to cleavages at 6 of 12 (1545.7-Da peptide) and 8 of 21 (2944.5-Da peptide) expected backbone amine bonds. The present sensitivity is 200-2000 times higher than previously reported. These results show promise for ECD as a tool to produce sequence tags for identification of peptides in complex mixtures available only in limited amounts, as in proteomics.  相似文献   

11.
Fractionation of isotopically labeled peptides in quantitative proteomics.   总被引:8,自引:0,他引:8  
The goal of quantitative proteomics is to examine the expression levels of all of the proteins in a biological system and recognize those that change as a function of some stimulus. Quantification is now frequently based on derivatization of peptides with isotopically distinguishable labeling agents. This study examines the extent to which isotopic forms of peptides having the same amino acid sequence are resolved by reversed-phase chromatography and assesses the degree to which resolution of these isotopically different forms of a peptide impact quantification. Three derivatizing agents were examined, the do and d3 forms of N-acetoxysuccinimide, the do and d4 forms of succinic anhydride, and the do and d8 forms of the commercial ICAT reagent Peptide mixtures from control and experimental samples were derivatized individually, mixed, subjected to reversed-phase chromatography, and analyzed by ESI-MS. When partial resolution of the isotopic forms of a peptide occurs, the largest error in assessing the true isotope ratio in a sample occurs when sampling at the extremes of a peak. Early in the elution of a peak, the sample will be enriched in the deuterated species, whereas the opposite is true at the tailing edge of a peak. Acetylated peptides showed the lowest degree of separation. Resolution of the deuterated and nondeuterated forms in this case was 0.023. This amounts to slightly over a 1-s difference in their peak maxima and can cause a typical error of +/- 6% at the leading and tailing edges of a peak. In contrast, resolution of the deuterated and nondeuterated forms of the ICAT reagent were calculated to be 0.45. This means that in a peak of 1-min width (W1/2), the peak maxima will vary by approximately 30 s, and measurement errors of -83 and +500% can occur at the leading and tailing edges of a peak. It is concluded that resolution of isotopic forms of a peptide can cause substantial quantification errors in quantitative proteomics.  相似文献   

12.
A new method for proteolytic stable isotope labeling is introduced to provide quantitative and concurrent comparisons between individual proteins from two entire proteome pools or their subfractions. Two 18O atoms are incorporated universally into the carboxyl termini of all tryptic peptides during the proteolytic cleavage of all proteins in the first pool. Proteins in the second pool are cleaved analogously with the carboxyl termini of the resulting peptides containing two 16O atoms (i.e., no labeling). The two peptide mixtures are pooled for fractionation and separation, and the masses and isotope ratios of each peptide pair (differing by 4 Da) are measured by high-resolution mass spectrometry. Short sequences and/or accurate mass measurements combined with proteomics software tools allow the peptides to be related to the precursor proteins from which they are derived. Relative signal intensities of paired peptides quantify the expression levels of their precursor proteins from proteome pools to be compared, using an equation described in the paper. Observation of individual (unpaired) peptides is mainly interpreted as differential modification or sequence variation for the protein from the respective proteome pool. The method is evaluated here in a comparison of virion proteins for two serotypes (Ad5 and Ad2) of adenovirus, taking advantage of information already available about protein sequences and concentrations. In general, proteolytic 18O labeling enables a shotgun approach for proteomic studies with quantitation capability and is proposed as a useful tool for comparative proteomic studies of very complex protein mixtures.  相似文献   

13.
We have developed a complete system for the isotopic labeling, fractionation, and automated quantification of differentially expressed peptides that significantly facilitates candidate biomarker discovery. We describe a new stable mass tagging reagent pair, (12)C(6)- and (13)C(6)-phenyl isocyanate (PIC), that offers significant advantages over currently available tags. Peptides are labeled predominantly at their amino termini and exhibit elution profiles that are independent of label isotope. Importantly, PIC-labeled peptides have unique neutral-mass losses upon CID fragmentation that enable charge state and label isotope identification and, thereby, decouple the sequence identification from the quantification of candidate biomarkers. To exploit these properties, we have coupled peptide fractionation protocols with a Thermo LTQ-XL LC-MS(2) data acquisition strategy and a suite of automated spectrum analysis software that identifies quantitative differences between labeled samples. This approach, dubbed the PICquant platform, is independent of protein sequence identification and excludes unlabeled peptides that otherwise confound biomarker discovery. Application of the PICquant platform to a set of complex clinical samples showed that the system allows rapid identification of peptides that are differentially expressed between control and patient groups.  相似文献   

14.
A rapid means of stereochemical differentiation and quantification for the hexosamine monosaccharides was achieved using electrospray ionization quadrupole ion trap mass spectrometry. The hexosamine monosaccharides, glucosamine, galactosamine, and mannosamine, were derivatized with [Co(DAP)2Cl2]Cl, and the complex [Co(DAP)2(HexNH2)]Cl was generated. Subjecting this complex to collision-induced dissociation provided a unique product ion spectrum for each of the diastereomeric monosaccharide complexes, thus differentiating the stereoisomers. Furthermore, the stereoisomers were quantified. This was achieved by using the relative abundances of product ions from pure standards and using these values to determine the ratio of isomeric products in a mixture. The utility of this quantification method was demonstrated by successfully determining the composition of two- and three-component mixtures of the hexosamines.  相似文献   

15.
Ramos AA  Yang H  Rosen LE  Yao X 《Analytical chemistry》2006,78(18):6391-6397
Parallel fragmentations of peptides in the source region and in the collision cell of tandem mass spectrometers are sequentially combined to develop parallel collision-induced-dissociation mass spectrometry (p2CID MS). Compared to MS/MS spectra, the p2CID mass spectra show increased signal intensities (2-400-fold) and number of sequence ions. This improvement is attributed to the fact that p2CID MS virtually samples all the ions generated by electrospray ionization, including intact and fragment ions of different charge states from a peptide. We implement the method using a quadrupole time-of-flight tandem mass spectrometer. The instrument is operated in TOF-MS mode that allows the ions from source region broadband-passing the first mass analyzer to enter the collision cell. Cone voltage and collision energy are investigated to optimize the outcome of the two parallel CID processes. In the in-source parallel CID, elevated cone voltage produces singly charged intact peptide ions and large fragment ions, as well as decreases the charge-state distribution of peptide ions mainly to double and single charges. The in-collision-cell parallel CID is optimized to dissociate the ions from the source region to produce small and medium fragment ions. The method of p2CID MS is especially useful for sequencing of large peptides with labile amide bonds and peptides with C-terminal arginine. It has unique potential for de novo sequencing of peptides and proteome analysis, especially for affinity-enriched subproteomes.  相似文献   

16.
Subfemtomole peptide sequence analysis has been achieved using microcapillary HPLC columns, with integrated nanoelectrospray emitters, coupled directly to a Fourier transform ion cyclotron resonance mass spectrometer. Accurate mass (+/-0.010 Da) peptide maps are generated from a standard six-protein digest mixture, whose principle components span a concentration dynamic range of 1000:1. Iterative searches against approximately 189000 entries in the OWL database readily identify each protein, with high sequence coverage (20-60%), from as little as 10 amol loaded on-column. In addition, a simple variable-flow HPLC apparatus provides for on-line tandem mass spectrometric analysis of tryptic peptides at the 400-amol level. MS/MS data are searched against approximately 280000 entries in a nonredundant protein database using SEQUEST. Accurate precursor and product ion mass information readily identifies primary amino acid sequences differing by asparagine vs aspartic acid (deltam = 0.98 Da) and glutamine vs lysine (deltam = 0.036 Da).  相似文献   

17.
In this paper, the first examples of baseline separation of isomeric macromolecules by electrospray ionization/ion mobility spectrometry (ESI/IMS) at atmospheric pressure are presented. The behavior of a number of different isomeric peptides in the IMS was investigated using nitrogen as a drift gas. The IMS was coupled to a quadrupole mass spectrometer, which was used for identification and selective detection of the electrosprayed ions. The mobility data were used to determine their average collision cross sections. The gas-phase ions of isomeric peptides were found to have different collision cross sections. In all cases, doubly charged ions exhibited significantly (8-20%) larger collision cross sections than the respective singly charged species. The analysis of mixtures of the isomeric peptides clearly demonstrated the capability of IMS to separate gas-phase peptide ions due to small differences in their conformational structures, which cannot be determined by mass spectrometry. An actual resolving power of 80 was achieved for two doubly charged reversed sequenced pentapeptides. Baseline separation was provided for ions differing by only 2.5% in their measured collision cross sections; partial separation was shown for isomeric ions exhibiting differences as small as 1.1%.  相似文献   

18.
We modified a dual-cell linear ion trap mass spectrometer to perform infrared multiphoton dissociation (IRMPD) in the low-pressure trap of a dual-cell quadrupole linear ion trap (dual-cell QLT) and perform large-scale IRMPD analyses of complex peptide mixtures. Upon optimization of activation parameters (precursor q-value, irradiation time, and photon flux), IRMPD subtly, but significantly, outperforms resonant-excitation collisional-activated dissociation (CAD) for peptides identified at a 1% false-discovery rate (FDR) from a yeast tryptic digest (95% confidence, p = 0.019). We further demonstrate that IRMPD is compatible with the analysis of isobaric-tagged peptides. Using fixed QLT rf amplitude allows for the consistent retention of reporter ions, but necessitates the use of variable IRMPD irradiation times, dependent upon precursor mass to charge (m/z). We show that IRMPD activation parameters can be tuned to allow for effective peptide identification and quantitation simultaneously. We thus conclude that IRMPD performed in a dual-cell ion trap is an effective option for the large-scale analysis of both unmodified and isobaric-tagged peptides.  相似文献   

19.
Many cellular processes are regulated by reversible protein phosphorylation, and the ability to broadly identify and quantify phosphoproteins from proteomes would provide a basis for gaining a better understanding of these dynamic cellular processes. However, such a sensitive, efficient, and global method capable of addressing the phosphoproteome has yet to be developed. Here we describe an improved stable-isotope labeling method using a phosphoprotein isotope-coded solid-phase tag (PhIST) for isolating and measuring the relative abundances of phosphorylated peptides from complex peptide mixtures resulting from the enzymatic digestion of extracted proteins. The PhIST approach is an extension of the previously reported phosphoprotein isotope-coded affinity tag (PhIAT) approach developed by our laboratory, where phosphoseryl and phosphothreonyl residues were derivatized by hydroxide ion-mediated beta-elimination followed by the Michael addition of 1,2-ethanedithiol (EDT). Instead of using the biotin affinity tag, peptides containing the EDT moiety were captured and labeled in one step using isotope-coded solid-phase reagents containing either light (12C6, 14N) or heavy (13C6, 15N) stable isotopes. The captured peptides labeled with the isotope-coded tags were released from the solid-phase support by UV photocleavage and analyzed by capillary liquid chromatography-tandem mass spectrometry. The efficiency and sensitivity of the PhIST labeling approach for identification of phosphopeptides from mixtures were determined using casein proteins. Its utility for proteomic applications was demonstrated by the labeling of soluble phosphoproteins from a human breast cancer cell line.  相似文献   

20.
An ion trap/ion mobility/quadrupole/collision cell/time-of-flight mass spectrometer that incorporates a differentially pumped orifice-skimmer cone region at the back of the drift tube has been developed for the analysis of peptide mixtures. The combined approach allows a variety of strategies to be employed for collisionally activating ions, and fragments can be monitored by subsequent stages of mass spectrometry in a parallel fashion, as described previously (Anal. Chem. 2000, 72, 2737). Here, we describe the overall experimental approach in detail. Applications involving different aspects of the initial mobility separation and various collisional activation and parallel sequencing strategies are illustrated by examining several simple peptide mixtures and a mixture of tryptic peptides from beta-casein. Detection limits associated with various experimental configurations and the utility for analysis of complex systems are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号