首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为了研究不同参数对表面内嵌FRP筋加固梁抗剪性能的影响规律,对6根采用不同FRP筋类型、间距以及不同加固方式的FRP筋加固梁进行受剪性能试验.结果表明,该方法能够很好地改善加固梁的受剪性能,提高梁的极限承载力.未粘U箍和FRP筋间距小的加固梁更易发生剪切破坏.加固方式对加固梁跨中位移无明显影响,FRP筋类型和FRP筋间距对加固梁跨中位移影响显著.表面内嵌FRP筋不能提高试验梁的纯弯段开裂荷载,但能显著提高弯剪段开裂荷载.FRP筋类型、间距以及加固方式对加固梁的极限荷载影响显著.由于CFRP筋弹性模量高,故CFRP筋的应变小、利用率低;不粘贴U箍加固梁中FRP筋应变大于粘贴U箍加固梁;FRP筋间距越大,FRP筋的应变越大,利用率越高.  相似文献   

2.
为了获得拉拔荷载作用下土锚结构加速蠕变破坏时间和时效损伤的传递特征,建立了能反映锚固结构蠕变三阶段变形特征的塑性加速元件模型,根据土锚结构蠕变位移的构成特点,对加速蠕变破坏时间、脱黏段范围相对剪切位移、锚固失效时锚固段的剪切位移、锚土界面时效损伤变量进行解析计算.结果表明:在逐级加载过程中锚土界面损伤具有明显的非线性损伤特征和加速蠕变位移,且损伤变量在锚固段顶端脱黏范围的损伤程度最大,而在锚固段底端损伤最小,同时随着时间的延续,损伤也逐渐增大,同时损伤加速的时间还与加速蠕变的时间较吻合.控制加载速率与极限拉拔力和减小锚固段顶端脱黏段范围的相对剪切位移,有助于土锚结构工程的时效稳定性.  相似文献   

3.
本文采用12个PBL和3个PZ型剪力连接件试件,通过一套自主设计的单调加载装置,进行了极限抗拉拔承载力、相对位移、剪力键应变和破坏模式的测试试验,比较了开孔大小、埋置深度以及剪力键类型对试件极限抗拉拔承载力、初始开裂荷载和破坏模式的影响;并根据试验结果拟合了PBL剪力键极限抗拉拔承载力的计算公式。研究结果表明:加大孔径能直接提高PBL剪力键的极限抗拉拔承载力,当孔径由0mm增长到30mm,极限抗拉拔承载力增长率最大可达34.5%;埋置深度的增加较孔径能更显著地提升剪力键的极限抗拉拔承载力,当埋深由110mm增长至225mm,PBL和PZ型剪力连接件对应的极限抗拉拔承载力的增长率可分别达到224%和165%;PZ型剪力连接件较相同埋深的PBL剪力键有更大的极限抗拉拔承载力,同时由于其良好的疲劳性能,不同几何尺寸和构造的PZ型剪力连接件力学性能的研究工作有待进一步开展。  相似文献   

4.
目的解决夹心墙用拉结件的耐腐蚀性问题并研究其黏结、锚固性能.方法设计并制作塑料钢筋拉结件,通过U型塑料钢筋拉结件灰缝试件试验简单模拟环型塑料钢筋拉结件受拉状态,并通过单侧交替反复拉拔,研究环型塑料钢筋拉结件不均匀受力的特点.结果U型塑料钢筋拉结件极限拉拔力每组平均值为9.5~13.7 kN,极限拉拔力最小值为9.1 kN,在遭受大震作用时,塑料钢筋拉结件所传递的最大地震力远小于其极限拉拔力最小值.与普通钢筋锚固机理不同,U形塑料钢筋可进行单侧交替反复拉拔试验而始终具有一定的承载力且滑移值较大.结论环型塑料钢筋拉结件的受力性能可以满足夹心墙的使用要求,应用于夹心墙中的塑料钢筋拉结件可以发挥比普通钢筋拉结件更好的抗拉性能和变形性能.  相似文献   

5.
基于室内拉拔试验的物理模型,利用FLAC3D建立变径木锚杆拉拔数值计算模型,分析了变径木锚杆锚固系统的荷载传递规律、界面剪应力分布和传递规律、浆体土体应力场和位移场,并通过数值试验研究锚孔直径、锚杆直径和锚固长度对锚固效果的影响。研究结果表明:数值试验结果与室内拉拔试验结果较为吻合,证明数值模拟木锚杆拉拔过程的可行性和科学性;木锚杆浆体界面剪应力沿锚固段分布不均,主要集中在锚固段顶端和末端的0.1 m范围内,末端界面剪应力呈增大的趋势与其变径的结构特征有关,其变径的特点在一定程度上提高了木锚杆的抗拔力;变径木锚杆同时具有拉力型和压力型锚杆的特征,径向具有剪胀作用;锚固影响因素中锚孔直径、锚固长度对木锚杆抗拔力影响显著,而锚杆直径对其影响相对较小;提出了木锚杆极限抗拔力计算公式。  相似文献   

6.
开发通用型CFRP筋夹片式锚具,它由锚杯、夹片及涂石英砂铝套管组成.在理论计算的基础上,对该锚具开展能够锚固包括光圆在内的各种表面形式CFRP筋的优化设计,对疲劳性能进行试验研究.结果表明,不管是光圆的还是压纹的CFRP筋,对应的锚固体系经200万次应力幅为极限拉应力7%的循环荷载作用后,均未出现明显受损的迹象,抗疲劳潜能较大.在疲劳试验过程中,CFRP筋-锚具及锚具组件间相对位移的绝大部分是由循环荷载作用前的最大拉力产生的,组件间的相对位移对锚固体系应用于实际工程时结构受力几乎不产生影响.  相似文献   

7.
土钉钉头为土钉墙整体结构中的薄弱部位,为研究土钉钉头锚固性能,以一种装配式柔性面层GFRP筋土钉墙为例,通过室内钉头锚固性能试验及三维数值模拟对外径32 mm的中空GFRP筋钉头的极限抗拉强度、钉头变形及破坏规律进行研究。研究结果表明,该GFRP筋钉头极限承载力在240~290 kN之间,当螺母拧紧时螺纹副的应力主要分布在螺纹牙前3环,其中以钉头第1环螺纹牙应力集中现象尤为明显;此外,采用螺纹展开法建立钉头螺纹牙的力学模型,得出了第1环螺纹极限剪切强度与钉头极限荷载之间的关系,并通过计算得出该GFRP筋钉头极限承载力为244.54 kN,与试验结果相符。通过室内钉头锚固性能试验的脆性破坏特点,确定GFRP筋钉头安全系数在1.8~2.0之间,并判定此种GFRP筋安全荷载在125~135 kN之间。  相似文献   

8.
为研究玻璃纤维增强塑料(GFRP)棒状连接件的截面尺寸、连接件间距对夹芯保温墙板连接件的抗剪性能影响,本文使用ABAQUS有限元软件建立夹芯墙板受力模型,采用设置MC型、十字形截面连接件的夹心保温墙板进行仿真模拟。研究结果表明:连接件在竖向荷载作用下受力分为线弹性、非线性、达到抗剪承载力极限3个阶段;夹芯保温墙板连接件个数越多、排布间距越小,抗剪承载力越大;相同条件下,十字型截面的连接件抗剪性能优于MC型连接件;满足抗剪承载力的条件下,模型L1、模型L2、模型L6、模型L7设计的夹芯保温墙板的工程应用性和经济性更好。  相似文献   

9.
为了探明预应力筋张拉时缓粘结剂固化程度对缓粘结预应力混凝土梁力学性能的影响,进行了梁的承载力力学性能试验.结果表明:张拉时缓粘结剂固化程度对梁的开裂荷载影响较小,对极限荷载的影响较大,且缓粘结剂固化程度越高,缓粘结预应力混凝土梁的极限荷载越低;张拉时缓粘结剂处于张拉适用期的试件梁具有较好的力学性能,其纯弯段部分的裂缝开展均匀,数量较多,梁的延性增强,预应力钢筋与混凝土具有良好的共同工作状态,与有粘结预应力混凝土梁受力性能基本相当.  相似文献   

10.
通过研制的一套张拉锚固设备对碳纤维板施加预应力后加固试验梁对其进行抗弯静载试验.试验表明未施加预应力CFRP板梁开裂荷载没有影响,而预应力CFRP板加固梁的开裂荷载有明显提高,可以延缓梁的开裂;所有加固梁的屈服荷载、极限荷载都有所提高,同时增加了构件的刚度;试验时粘贴CFRP板加固梁超过了CFRP板极限抗拉强度的25%,而预应力CFRP板加固梁接近粘贴CFRP板的二倍,充分发挥了材料的强度;试验所用的锚具在梁加载过程中没有出现滑移,锚固效果良好.  相似文献   

11.
剪力连接件是保证GFRP混凝土组合梁/板中两种不同材料共同工作的重要构造,设计了矩形肋和T形肋两类GFRP肋式剪力连接件,进行了3组共8个GFRP肋式剪力连接件的推出试验,包括:矩形肋开孔、T形肋开孔、T形肋不开孔3组GFRP肋式剪力连接件,得到了其破坏形态、极限承载力、荷载滑移曲线及荷载应变变化规律,重点研究肋内开孔及肋的截面形式对GFRP肋式剪力连接件受力性能的影响。试验结果表明:GFRP肋式剪力连接件的破坏形态均为混凝土劈裂破坏;对比矩形肋开孔试件,T形肋开孔试件强度高、延性好;对比T形肋不开孔试件,T形肋开孔试件强度与延性均能提高。基于试验结果,建立了考虑肋内开孔及肋截面形式影响的GFRP肋式剪力连接件极限承载力计算公式,拟合得到了GFRP肋式剪力连接件的荷载滑移曲线上升段的理论模型,建立了其抗剪刚度计算公式。  相似文献   

12.
为比较套筒灌浆搭接及对接接头间力学性能差异,进行了41个搭接接头和20个对接接头的单拉及高应力反复拉压试验。结果表明:单拉及高应力反复拉压时,两种接头均能实现最大力下总伸长率大于6%、延性系数大于4,强度基本满足规范要求;高应力反复拉压后单拉时,两种接头承载力均有所提高,但接头初始刚度和延性下降;防偏转措施可减少搭接接头残余变形,但其约束刚度有限,搭接接头残余变形略大于对接接头,防偏转搭接接头及对接接头残余变形基本满足规范要求;高应力反复拉压后单拉时,搭接接头套筒中部截面在加载前期纵向受拉、环向受压,加载后期纵向受压、环向受拉,对接接头套筒加载过程中均为纵向受拉、环向受压;高应力反复拉压结束后单拉时,防偏转、不防偏转搭接接头套筒中部截面近钢筋侧最大纵向拉应变分别为对接接头的0.10~0.39倍、0.13~0.18倍,最大环向压应变分别为对接接头的0.09~0.49倍、0.02~0.32倍,搭接接头对套筒材性要求较低;钢筋直径相同时搭接接头材料成本较对接接头降低约35%。  相似文献   

13.
为了解决钢-UHPC组合桥面板因UHPC层较薄导致剪力件高度受限、施工难度大、抗剪强度和刚度不足等问题,提出弧形钢筋、栓钉+弧形钢筋2种新型剪力连接方式. 考虑剪力件直径的影响,设计7组共14个推出试件,通过与栓钉剪力件对比分析,研究剪力件的抗剪性能及承载力. 结果表明:3种剪力件的破坏形态及破坏机理、荷载?滑移曲线变化规律区别明显. 弧形钢筋剪力件的延性和刚度均优于另外2种剪力件,且与直径呈线性关系. 基于线性回归分析,给出考虑栓钉周围楔形块对栓钉剪力件抗剪贡献的承载力计算公式、考虑弧形钢筋和其内部UHPC共同抗剪的承载力计算经验公式,计算结果与试验值较吻合.  相似文献   

14.
为研究配置HRB400E钢筋混凝土梁柱边节点的抗剪性能,以混凝土强度、水平纵筋锚固方式、梁纵筋配筋率为主要研究参数,采用正交试验法设计了9个试件并完成了梁柱边节点的抗剪试验。试验结果表明:试件多发生梁端弯曲和核心区剪切破坏,但采用弯折锚固方式可有效减少节点核心区裂缝数量;在本文3个研究参数中,混凝土强度对初裂时节点核心区剪切变形影响最大,混凝土强度等级越高初裂阶段的节点剪切变形角越小;水平纵筋锚固方式对极限状态时节点核心区剪切变形影响最大,当采用90°弯折锚固方式时节点的剪切变形角最小;梁纵筋配筋率对节点水平剪力影响最大,配筋率越大节点水平剪力越大。采用正交试验原理结合极差、方差数理统计理论对梁柱边节点抗剪性能影响参数进行分析可梳理出各因素的主次关系和变化趋势。  相似文献   

15.
为研究后插钢筋位置等对套筒灌浆搭接接头(简称APC接头)力学性能的影响,进行了45个该接头拉伸试验,研究了其破坏形态、延性、极限承载力和套筒应变等,并利用ABAQUS进行数值模拟和参数分析。试验结果表明:接头的初始刚度和延性随两钢筋距离的增大而降低;钢筋与套筒接触和钢筋间距离减小均使接头承载力降低,前者对黏结强度降低起控制作用;极限荷载时偏转(两钢筋圆心连线)方向套筒中部截面纵向受压,钢筋拉断破坏试件,其套筒中部截面压应变随钢筋直径增大而增大;极限荷载时套筒中部截面环向应变以拉应变为主,且环向平均拉应力随钢筋直径增大而增大。基于ABAQUS进行了接头精细化数值模拟,与试验结果吻合较好。模拟参数分析表明:偏转降低试件的极限承载力,偏转对发生钢筋拔出破坏试件的极限承载力影响较大,对发生钢筋拉断破坏试件的影响较小;随搭接长度增加,黏结应力曲线峰值先增大后减小,曲线饱满程度先减小后增大。根据前期及本次试验拟合得到的极限黏结强度计算公式适用性较好,可作为实际工程参考。  相似文献   

16.
为了研究化学植筋式后锚固群锚系统抗剪承载力的影响因素,通过4组化学锚栓群锚系统受剪破坏性试验,研究在不同边距、不同间距下系统抗剪承载力情况.通过观察试件的破坏形式、测试破坏荷载以及有限元分析,结果表明:边距大小影响化学锚栓群锚系统破坏形式和锚栓位移,边距小会发生脆性破坏而边距大则发生延性破坏;植筋间距大小会影响群锚系统锚栓之间相互作用.间距小时,同一排锚栓产生的应力相互影响,裂缝会向锚栓深度方向上扩展,间距大时同一排锚栓的产生应力相互独立,开裂后混凝土形成两个独立楔形体.通过对比规范计算结果、有限元分析结果和试验结果,验证了现行规范关于抗剪承载力设计的可靠性.  相似文献   

17.
通过编写Vumat子程序定义玻璃纤维增强塑料(GFRP)锚杆材料参数,并考虑GFRP锚杆与砂浆界面的不均匀及损伤特性进行正交各向异性建模,借助ABAQUS有限元软件对GFRP锚杆与砂浆界面的粘结滑移特性进行分段模拟,探究GFRP锚杆轴力、界面剪应力分布形态,进而对不同直径GFRP锚杆-砂浆界面力学特性进行分析。研究结果表明:分段式有限元模型能够较好地反映GFRP锚杆-砂浆的粘结特性。随着施加荷载的增加,GFRP锚杆所受轴力逐渐增大,荷载传递深度逐渐加深,锚固作用自上而下逐渐发挥;GFRP锚杆拔出所需最大拉力、界面破坏位移随直径减小而增大。GFRP锚杆发生破坏的临界直径为28 mm,当直径大于28 mm时发生滑移破坏,直径小于28 mm时发生强度破坏。计算确定直径28 mm GFRP锚杆的锚固系数K1为0.155。  相似文献   

18.
碳纤维与玻璃纤维增强聚合物复合材料耐久性   总被引:1,自引:0,他引:1  
通过快速碳化、模拟海水潮汐作用的干湿循环、冻融循环作用以及纵向拉伸试验,研究了特定环境对碳纤维与玻璃纤维增强聚合物复合材料(CFRP与GFRP)纵向受拉性能的影响.试验结果表明:CFRP在这三种环境下强度变化不大,弹性模量有所提高,延伸率在干湿循环下略有降低.GFRP的力学性能在这三种环境下也都有不同程度的退化.湿度或水分和温度变化是影响FRP性能的重要环境因素.  相似文献   

19.
Based on the fast freeze-thaw cycling test, the alkaline immersion test, the water immersion test and the wet-thermal exposure test, the influence of aggressive environments on mechanical behavior of FRP was studied. CFRP specimens subjected to aggressive environments showed good durability with no significant degradation in tensile strength and modulus; however, GFRP specimens exhibited a little decrease in mechanical property after aggressive environments exposure. Based on the fast freeze-thaw cycling test and the wet-thermal exposure test, the influence of aggressive environments on the bond behavior between FRP and concrete, mechanical behavior of concrete beams and columns strengthened with FRP laminates was studied. The results showed that the bond strength had a significant decrease compared with those specimens kept at room temperature, and the specimens strengthened with FRP exhibited good durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号