首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
张艳宾  张海峰 《热力透平》2011,40(4):286-288
针对大唐盘山发电有限责任公司凝汽器铜管腐蚀问题和胶球清洗系统收球率低的问题进行专题分析,从胶球清洗系统管理上存在的漏洞着手,结合现场实际,提出对凝汽器胶球清洗工作进行精细化管理的具体方案,以确保机组能够安全、经济运行。  相似文献   

2.
某公司凝汽器冷却水采用开式循环,即用长江水作为凝汽器冷却水源,由于凝汽器钛管易出现泥沙沉积,导致凝汽器真空降低。凝汽器清洗主要采用机械清洗和胶球清洗相结合的方式,这种清洗方式效率低下,浪费较大的人力物力。凝汽器机器人在线清洗是目前国内最先进的清洗技术,该公司于2015年对其5号机凝汽器清洗装置进行改造,用该技术取代传统清洗方法,并通过测定清洁系数进行效益分析,实践证明加装机器人清洗系统后该厂发电标煤耗及凝汽器清洗费用得到了明显降低。  相似文献   

3.
介绍了凝汽器冷却管在汽、水侧的腐蚀原因和机理,汽侧腐蚀与低压缸的高速排汽流、凝汽器的负荷、附加流体的排入等有关,水侧的腐蚀与冷却水质、水速、冷却管材质等诸因素有关,还与附加保护、管侧清洗方式等有关。如何预防汽、水侧的腐蚀,直接影响到凝汽器的运行和使用寿命,同时还对汽轮机组的安全性、经济性有重大影响,从设计、选材观点出发介绍不同水质的选材要领及相关数据。  相似文献   

4.
凝汽器铜管的联合保护研究   总被引:7,自引:0,他引:7       下载免费PDF全文
凝汽器铜管的腐蚀与防护一直是令人关心但又未解决好的问题,由于凝汽器运行条件复杂,材质众多及冷却水质的不断恶化,导致其腐蚀形式多种多样,为此,这里探讨了一种凝汽器铜管的联合保护方式,即铜管管端与管板采用涂刷XZ-A增韧防腐胶与阴极保护的方式联合保护,铜管其它部位采用FeSO4镀膜(包括定期补膜)与胶球清洗的方式联合保护。实践证明了这种联合保护能够有效防止凝汽器铜管的腐蚀。  相似文献   

5.
为提高火电机组的热经济性,降低冷端损失,利用FLUENT数值模拟软件,对某600MW机组凝汽器进行数值模拟,根据模拟结果发现凝汽器入口水室内出现胶球集聚打旋现象。对于传统胶球清洗系统存在的问题,提出对凝汽器胶球清洗的方式进行优化,利用可移动的投球装置,在凝汽器入口水室内靠近端孔板平面处精确投球,将胶球直接打入冷却水管,避免了因入口水室结构因素影响凝汽器冷却管清洗效果。结果表明,凝汽器清洗得更加均匀、彻底,改造后的凝汽器清洗装置能满足清洗冷却管的要求。  相似文献   

6.
为研究某核电工程凝汽器胶球清洗装置的技术可行性及经济性,以该项目凝汽器换热管的清洗方法为研究对象,首先就该项目配置凝汽器胶球清洗装置的技术可行性对厂址条件等进行了分析,其次对该项目配置凝汽器胶球清洗装置的经济性进行了计算分析。结果表明:该核电工程配置凝汽器胶球清洗装置在技术上可行,在经济上合理,且配置此装置可以提高整个机组的经济效率。研究成果可为同类机组配置凝汽器胶球清洗装置提供参考。  相似文献   

7.
简讯          下载免费PDF全文
流体喷沙清洗凝汽器技术 重庆永荣发电厂用流体喷沙清洗凝汽器是个新创举,该机组在满负荷状态下,在清洗泵的进水口 加入适量的河沙和粗烟灰充分混合物,充分冲刷凝汽器铜管中的粘附及悬浮物,两小时内即能迅速提 高凝汽器的真空度。采用该措施后,该机组停机清洗凝汽器每年减少了十余次,多发电约106kWh。(赵旺初 供稿)燃气流温度场不均匀性的影响据《Тяжелоемашиностроение》2005年6月号报道,由燃气流温度场不均匀性引起的热应力和腐蚀增加将导致燃气轮机叶片的加速破坏。燃气轮机内的燃气流温度场通常具有径向和周向的…  相似文献   

8.
介绍河北钢铁集团承钢公司能源中心对35MW汽轮机组调速系统进行改造的实践过程,通过采取更换凝汽器铜管为不锈钢管,增加胶球清洗装置,控制高炉鼓风机运行工况点等措施,解决了调速系统卡涩这一困扰汽轮机组生产安全与稳定的问题,实现了控制腐蚀速率及凝汽器的在线清洗,提高了汽轮机组的运行稳定性,降低了机组汽耗率,达到了减少排风,节约能源的目的,取得了较好的经济效益。  相似文献   

9.
凝汽器清洁度是关系到电厂经济安全运行的重要指标,但在凝汽器运行过程中,由于水质、温度、流速等原因,不可避免地会造成冷却管内部结垢和腐蚀。定区域胶球清洗系统正是为了解决这一问题而设计出来的,在某电厂双流程凝汽器的后水室安装三排四列投球管,控制不同投球方式,实现定区域清洗。使用Fluent进行了7种投球位置工况、13种速度工况的数值模拟,优化研究方案如下:最佳投球位置是开启上排和下排投球管;最佳进水流量是9.1m~3/s~10.2m~3/s;最佳射流流量是0.016m~3/s~0.02m~3/s。此时,胶球在凝汽器内可以实现定区域投放,清洗效果最好,且节省胶球和能耗。  相似文献   

10.
为了提高凝汽器的清洁度及换热能力,降低汽轮机背压,提升机组运行经济性,模拟开式循环水中沙粒对于凝汽器的自然冲刷清洗功能,提出了一种闭式循环水系统凝汽器仿生态自然清洗方法。通过向闭式循环水中投放固体清洗颗粒,实现对凝汽器换热管束的不间断在线除垢功能。选取陶粒作为本方法中的固体清洗颗粒并对其选型以及投放方案进行了研究,在兼顾清洗效果的同时,降低了清洗成本。通过试验的手段验证了本清洗方法的合理性,并总结了该方法的清洗特性。研究可为凝汽器运行及相关设计工作提供参考。  相似文献   

11.
This paper investigates a detailed thermodynamic analysis of a modular-type membrane condenser system where a cooler or condenser is connected in series upstream of the membrane condenser module. A coolant circulates inside the cooler/condenser to cool down the industrial flue gas up to saturation conditions. The analysis covers water recovery rate and energy requirement for different combinations of flue gas humidity, flow rate, and temperature. Additionally, a case study is included which considers a practical industrial exhaust flue gas where the constituents of the flue gas with volumetric ratio and the feed parameters are referred from the literature. The case study investigated the utilization of cold energy obtained by LNG regasification facility as a cooling power source for the water vapor recovery process. A detailed heat transfer analysis based on the heat exchanger model is performed to determine the required mass flow rate of cooling water and natural gas. It is concluded that, the water self-sufficiency of a power plant can be achieved if the mass flow rate of the −50 °C natural gas which is entering the membrane condenser is kept around 0.3 kg s−1 for every 1  kg s−1 flow rate of the 168 °C flue gas.  相似文献   

12.
ATESTRIGFORTHEREALIZATIONOFWATERRECOVERYINASTEAM┐INJECTEDGASTURBINEWenXueyou,ZouJiguo,FuZheng,YuShikang,LiLingbo(Harbin№703Re...  相似文献   

13.
T. Srinivas   《Energy》2009,34(9):1364-1371
Deaerator is an essential open feed water heater in the steam bottoming cycle to improve the efficiency and also to remove the dissolved gasses from the feed water. Heat recovery steam generator (HRSG) plays a key role on the performance of the combined cycle (CC). In this work, attention has been focused to improve the performance of a triple pressure (TP) CC with a deaerator location. In this work, two options for deaerator location, one at condenser (deaerator–condenser) and the other in between low pressure (LP) and intermediate pressure (IP) heaters have been studied to increase the heat recovery from the gas turbine exhaust. The compressor pressure ratio is not fixed initially and evaluated from HRSG inlet condition. The LP and IP in HRSG have been evaluated from the local flue gas temperature to get the minimum possible temperature difference in the heaters. The results show that the deaerator placed in between the LP and IP heaters, gives high efficiency compared to a deaerator–condenser arrangement. The optimum conditions for the HRSG, deaerator and steam reheater are evaluated through the thermodynamic study. The results are validated by comparing with the published results.  相似文献   

14.
The absorption of geothermal gases by the cooling water of a turbine exhaust steam condenser can be minimised by a combination of design and control technology. The condenser system should comprise the two stages of a condenser and gas cooler with parallel cooling water supply and hot water disposal systems. Each stage should operate countercurrently.The control system discussed allows the condenser to retain its traditional flexibility of improved vacuum in cool weather and yet maintains a distribution of heat loads between the condenser and gas cooler without the use of accurate heat balances.The design and control technology has been tested successfully on a pilot plant and resulted in a cooling water system that results in very low corrosion rates in moderate corrosion resistant materials.  相似文献   

15.
The main aim of this paper was the development of a mathematical model for a new proposed passive condenser in order to enhance the performance of a humidification–dehumidification Seawater Greenhouse desalination system. Seawater Greenhouse desalination is used to create a cool environment and at the same time to produce fresh water for irrigation of crops grown inside the unit. The condenser in particular is currently one of the main bottlenecks in the commercialization of the technology. In addition to the current pump driven condenser, two new designs were considered: a passive cooling system with a condenser immersed in a water basin, and an external passive condenser connected to a basin of water placed on top of the cooling unit. The simulated condensate values for the proposed passive cooling condenser were compared with that of the actual measured values of the installed condenser. Preliminary results suggest that the passive condenser has a much greater water production capacity than the existing pump driven system. While the model for the proposed system still needs to be validated experimentally the initial study indicates that the passive containment cooling system is a promising improvement in the further development of greenhouse desalination.  相似文献   

16.
针对胜利发电厂射水抽气设备工作水温度偏高的现状,提出在凝汽器与抽气器之间的抽气管路上安装一个冷却器,使从凝汽器抽出的气、汽混合物中的水蒸气凝结疏出的方法,降低抽气设备工作水温度,提高其抽气能力,从而提高凝汽器的真空。  相似文献   

17.
梁仁建 《节能技术》2009,27(2):158-160
本文对小型空调器的冷凝废热进行了计算和分析,研制出了循环式小型空调器冷凝废热热水器,测试和应用表明,循环式小型空调器冷凝废热热水器是一种可以市场化的产品。  相似文献   

18.
介绍了对凝汽器铜管进行一次性造膜新的工艺方法,该方法不需要加装很多临时系统,按照造膜原理,在循环水管线加一加药管,连续向循环水中加药,药液与循环水混合后,在凝汽器和水塔水池之间循环,调整循环水的pH值和Fe^2 离子浓度,使Fe^2 离子逐渐沉积到铜管内壁,从而实现对凝汽器的成膜。实践证明,该工艺不仅能保证造膜质量,而且省工省时。  相似文献   

19.
660 MW超临界机组凝汽器空化故障分析   总被引:1,自引:0,他引:1  
660 MW超临界机组凝汽器(型号N-36600)在循环水系统调试过程中,出现噪声、水侧液位波动等异常现象,液位最大波动幅度达400 mm,现场通过逐步关小凝汽器回水阀门,提高凝汽器冷却管内压力,当进口水室压力达到0.106 MPa时,凝汽器水侧的噪声、液位波动等现象消失。结合空化初生理论分析,认为凝汽器内部发生了空化。标准与工程经验中确定虹吸利用高度时,基于水的饱和蒸汽压力,通常要求凝汽器最高点冷却管压力不低于20 kPa(绝压),而有关试验研究表明:清水的饱和蒸汽压力比空化初生压力低得多,即清水的绝对压力高于相应温度下的饱和蒸汽压力时,仍然可能发生空化,空化初生与水中的气态微核有直接关系。因此,在循环水系统水力计算中,虹吸利用高度的确定应充分考虑空化初生压力的影响,留出余量。并给出了处理建议,通过加高脱硫曝气池溢流堰的堰顶标高,提高凝汽器冷却管末端压力,是消除凝汽器空化现象最为经济合理的解决方案,有助于分析类似问题。  相似文献   

20.
潘新元 《汽轮机技术》2005,47(6):469-470,472
阐述了齐鲁石化公司热电厂1号汽轮机组凝汽器余热利用改造方案,实现冬季凝汽器半侧循环水切换为工业水,与乏汽换热后作为化学水制水原水。改造后节能效果明显,经济效益显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号