首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hybrid control system using a recurrent fuzzy neural network (RFNN) is proposed to control a linear induction motor (LIM) servo drive. First, feedback linearization theory is used to decouple the thrust force and the flux amplitude of the LIM. Then, a hybrid control system is proposed to control the mover of the LIM for periodic motion. In the hybrid control system, the RFNN controller is the main tracking controller, which is used to mimic a perfect control law, and the compensated controller is proposed to compensate the difference between the perfect control law and the RFNN controller. Moreover, an online parameter training methodology, which is derived using the Lyapunov stability theorem and the gradient descent method is proposed to increase the learning capability of the RFNN. The effectiveness of the proposed control scheme is verified by both the simulated and experimental results. Furthermore, the advantages of the proposed control system are indicated in comparison with the sliding mode control system  相似文献   

2.
This paper proposes a TSK-type recurrent neuro fuzzy system (TRNFS) and hybrid algorithm- GA_BPPSO to develop a direct adaptive control scheme for stable path tracking of mobile robots. The TRNFS is a modified model of the recurrent fuzzy neural network (RFNN) to obtain generalization and fast convergence. The TRNFS is designed using hybridization of genetic algorithm (GA), back-propagation (BP), and particle swarm optimization (PSO), called GA_BPPSO. For the tracking control of mobile robot, two TRNFSs are designed to generate the control inputs by direct adaptive control scheme and hybrid algorithm GA_BPPSO. Through simulation results, we demonstrate the effectiveness of our proposed controller.  相似文献   

3.
Wing rock is a highly nonlinear phenomenon in which an aircraft undergoes limit cycle roll oscillations at high angles of attack. In this paper, a supervisory recurrent fuzzy neural network control (SRFNNC) system is developed to control the wing rock system. This SRFNNC system is comprised of a recurrent fuzzy neural network (RFNN) controller and a supervisory controller. The RFNN controller is investigated to mimic an ideal controller and the supervisory controller is designed to compensate for the approximation error between the RFNN controller and the ideal controller. The RFNN is inherently a recurrent multilayered neural network for realizing fuzzy inference using dynamic fuzzy rules. Moreover, an on-line parameter training methodology, using the gradient descent method and the Lyapunov stability theorem, is proposed to increase the learning capability. Finally, a comparison between the sliding-mode control, the fuzzy sliding control and the proposed SRFNNC of a wing rock system is presented to illustrate the effectiveness of the SRFNNC system. Simulation results demonstrate that the proposed design method can achieve favorable control performance for the wing rock system without the knowledge of system dynamic functions.  相似文献   

4.
An adaptive fuzzy neural network (AFNN) control system is proposed to control the position of the mover of a field-oriented control permanent magnet linear synchronous motor (PMLSM) servo-drive system to track periodic reference trajectories in this paper. In the proposed AFNN control system, an FNN with accurate approximation capability is employed to approximate the unknown dynamics of the PMLSM, and a robust compensator is proposed to confront the inevitable approximation errors due to finite number of membership functions and disturbances including the friction force. The adaptive learning algorithm that can learn the parameters of the FNN on line is derived using Lyapunov stability theorem. Moreover, to relax the requirement for the value of lumped uncertainty in the robust compensator, which comprises a minimum approximation error, optimal parameter vectors, higher order terms in Taylor series and friction force, an adaptive lumped uncertainty estimation law is investigated. Furthermore, all the control algorithms are implemented in a TMS320C32 DSP-based control computer. The simulated and experimental results due to periodic reference trajectories show that the dynamic behaviors of the proposed control systems are robust with regard to uncertainties.  相似文献   

5.
《Advanced Robotics》2013,27(11):1529-1556
The problem of trajectory tracking control of an underactuated autonomous underwater robot (AUR) in a three-dimensional (3-D) space is investigated in this paper. The control of an underactuated robot is different from fully actuated robots in many aspects. In particular, these robot systems do not satisfy Brockett's necessary condition for feedback stabilization and no continuous time-invariant state feedback control law exists that makes a specified equilibrium of the closed-loop system asymptotically stable. The uncertainty of hydrodynamic parameters, along with the coupled, nonlinear dynamics of the underwater robot, also makes the navigation and tracking control a difficult task. The proposed hybrid control law is developed by combining sliding mode control (SMC) and classical proportional–integral–derivative (PID) control methods to reduce the tracking errors arising out of disturbances, as well as variations in vehicle parameters like buoyancy. Here, a trajectory planner computes the body-fixed linear and angular velocities, as well as vehicle orientations corresponding to a given 3-D inertial trajectory, which yields a feasible 6-d.o.f. trajectory. This trajectory is used to compute the control signals for the three available controllable inputs by the hybrid controller. A supervisory controller is used to switch between the SMC and PID control as per a predefined switching law. The switching function parameters are optimized using Taguchi design techniques. The effectiveness and performance of the proposed controller is investigated by comparing numerically with classical SMC and traditional linear control systems in the presence of disturbances. Numerical simulations using the full set of nonlinear equations of motion show that the controller does quite well in dealing with the plant nonlinearity and parameter uncertainties for trajectory tracking. The proposed controller response shows less tracking error without the usually present control chattering. Some practical features of this control law are also discussed.  相似文献   

6.
Hybrid control for speed sensorless induction motor drive   总被引:3,自引:0,他引:3  
The dynamic response of a hybrid-controlled speed sensorless induction motor (IM) drive is introduced. First, an adaptive observation system, which comprises speed and flux observers, is derived on the basis of model reference adaptive system (MRAS) theory. The speed observation system is implemented using a digital signal processor (DSP) with a high sampling rate to make it possible to achieve good dynamics. Next, based on the principle of computed torque control, a computed torque controller using the estimated speed signal is developed. Moreover, to relax the requirement of the lumped uncertainty in the design of a computed torque controller, a recurrent fuzzy neural network (RFNN) uncertainty observer is utilized to adapt the lumped uncertainty online. Furthermore, based on Lyapunov stability a hybrid control system, which combines the computed torque controller, the RFNN uncertainty observer and a compensated controller, is proposed to control the rotor speed of the sensorless IM drive. The computed torque controller with RFNN uncertainty observer is the main tracking controller and the compensated controller is designed to compensate the minimum approximation error of the uncertainty observer instead of increasing the rules of the RFNN. Finally, the effectiveness of the proposed observation and control systems is verified by simulated and experimental results  相似文献   

7.
A new hybrid direct/indirect adaptive fuzzy neural network (FNN) controller with a state observer and supervisory controller for a class of uncertain nonlinear dynamic systems is developed in this paper. The hybrid adaptive FNN controller, the free parameters of which can be tuned on-line by an observer-based output feedback control law and adaptive law, is a combination of direct and indirect adaptive FNN controllers. A weighting factor, which can be adjusted by the tradeoff between plant knowledge and control knowledge, is adopted to sum together the control efforts from indirect adaptive FNN controller and direct adaptive FNN controller. Furthermore, a supervisory controller is appended into the FNN controller to force the state to be within the constraint set. Therefore, if the FNN controller cannot maintain the stability, the supervisory controller starts working to guarantee stability. On the other hand, if the FNN controller works well, the supervisory controller will be deactivated. The overall adaptive scheme guarantees the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. Two nonlinear systems, namely, inverted pendulum system and Chua's (1989) chaotic circuit, are fully illustrated to track sinusoidal signals. The resulting hybrid direct/indirect FNN control systems show better performances, i.e., tracking error and control effort can be made smaller and it is more flexible during the design process.  相似文献   

8.
由于永磁直线同步电机(PMLSM)伺服系统应用于一些高精密场合,因此克服系统存在的负载扰动、参数变化等不确定性影响是提高系统性能的关键.针对不确定性问题,采用一种基于自适应模糊控制器(AFC)和非线性扰动观测器(NDO)的反馈线性化控制方法.首先设计反馈线性化控制器(FLC)实现系统的线性化,便于位置跟踪;其次采用NDO估计并补偿系统的不确定性,提高跟踪精度.但在实际运行过程中观测器增益较难选取,极易产生较大的观测误差,为此,采用AFC方法逼近NDO的观测误差,通过自适应律动态调整模糊规则,改善模糊控制器的学习能力,增强系统的鲁棒性,并用李雅普诺夫定理保证系统闭环稳定性.实验结果表明,与基于DOB和NDO的反馈线性化位置控制相比,该方法能够明显提高系统的跟踪性和鲁棒性.  相似文献   

9.
A supervisory fuzzy neural network (FNN) control system is designed to track periodic reference inputs in this study. The control system is composed of a permanent magnet (PM) synchronous servo motor drive with a supervisory FNN position controller. The supervisory FNN controller comprises a supervisory controller, which is designed to stabilize the system states around a defined bound region and an FNN sliding-mode controller, which combines the advantages of the sliding-mode control with robust characteristics and the FNN with online learning ability. The theoretical and stability analyses of the supervisory FNN controller are discussed in detail. Simulation and experimental results show that the proposed control system is robust with regard to plant parameter variations and external load disturbance. Moreover, the advantages of the proposed control system are indicated in comparison with the sliding-mode control system  相似文献   

10.
This study presents a robust fuzzy-neural-network (RFNN) control system for a linear ceramic motor (LCM) that is driven by an unipolar switching full-bridge voltage source inverter using LC resonant technique. The structure and operating principle of the LCM are introduced. Since the dynamic characteristics and motor parameters of the LCM are nonlinear and time varying, a RFNN control system is designed based on the hypothetical dynamic model to achieve high-precision position control via the backstepping design technique. In the RFNN control system a fuzzy neural network (FNN) controller is used to learn an ideal feedback linearization control law, and a robust controller is designed to compensate the shortcoming of the FNN controller. All adaptive learning algorithms in the RFNN control system are derived from the sense of Lyapunov stability analysis, so that system-tracking stability can be guaranteed in the closed-loop system. The effectiveness of the proposed RFNN control system is verified by experimental results in the presence of uncertainties. In addition, the advantages of the proposed control system are indicated in comparison with the traditional integral-proportional (IP) position control system  相似文献   

11.
《Advanced Robotics》2013,27(1-2):45-61
This paper proposes a new hybrid adaptive and learning control method based on combining model-based adaptive control, repetitive learning control (RLC) and proportional–derivative control to consider the periodic trajectory tracking problem of robot manipulators. The aim of this study is to obtain a high-accuracy trajectory tracking controller by developing a simpler adaptive dominant-type hybrid controller by using only one vector for estimation of the unknown dynamical parameters in the control law. The RLC input is adopted using the original learning control law, adding a forgetting factor to achieve the convergence of the learning control input to zero. We will improve and prove that the adaptive dominant-type controller could be applied for tracking a periodic desired trajectory in which adaptive control input increases and becomes dominant of the control input, whereas the other control inputs decrease close to zero. The domination of the adaptive control input gives the advantage that the proposed controller could adjust the feed-forward control input immediately and it does not spend much time relearning the learning control input when the periodic desired trajectory is switched over from the first trajectory to another trajectory. We utilize the Lyapunovlike method to prove the stability of the proposed controller and computer simulation results to validate the effectiveness of the proposed controller in achieving the accurate tracking to the periodic desired trajectory.  相似文献   

12.
This paper proposes a self-adaptive interval type-2 neural fuzzy network (SAIT2NFN) control system for the high-precision motion control of permanent magnet linear synchronous motor (PMLSM) drives. The antecedent parts in the SAIT2NFN use interval type-2 fuzzy sets to handle uncertainties in PMLSM drives, including payload variation, external disturbance, and sense noise. The SAIT2NFN is firstly trained to model the inverse dynamics of PMLSM through concurrent structure and parameter learning. The fuzzy rules in the SAIT2NFN can be generated automatically by using online clustering algorithm to obtain a suitable-sized network structure, and a back propagation is proposed to adjust all network parameters. Then, a robust SAIT2NFN inverse control system that consists of the SAIT2NFN and an error-feedback controller is proposed to control the PMLSM drive in a changing environment. Moreover, the Kalman filtering algorithm with a dead zone is derived using Lyapunov stability theorem for online fine-tuning all network parameters to guarantee the convergence of the SAIT2NFN. Experimental results show that the proposed SAIT2NFN control system achieves the best tracking performance in comparison with type-1 NFN control systems.  相似文献   

13.
This work presents a novel speed control scheme for an induction motor (IM) using an adaptive supervisory differential cerebellar model articulation controller (ASDCMAC). The ASDCMAC has a supervisory controller and an adaptive differential cerebellar model articulation controller (ADCMAC), and the ASDCMAC is utilized as the speed controller. The supervisory controller monitors the control process to keep speed tracking error within a predefined range, and the ADCMAC learns and approximates system dynamics. The connective weights of ADCMAC are adjusted online, according to adaptive rules derived in Lyapunov stability theory, to ensure system stability. The robustness of the proposed ASDCMAC against parameter variations and external load torque disturbances is verified via simulations and experiments, respectively. Three control schemes, the ASDCMAC, fuzzy control, and PI control, are investigated experimentally, and a performance index, root mean square error (RMSE), is utilized for each scheme. The experimental results demonstrate that the ASDCMAC outperforms the two other control schemes with external load torque variations.  相似文献   

14.
林尚伟  林岩 《控制工程》2008,15(3):235-238
讨论了快速路匝道系统中智能控制技术问题。针对匝道系统特点,分析了模糊控制、人工神经网络、遗传算法的适用性,提出了一种基于模糊控制律的遗传神经匝道协调控制方案。在该方案中,对模糊控制输入输出数据进行线性修正,使用修正后的数据完成遗传神经网络训练,并用神经网络代替模糊控制器对匝道系统进行控制。给出了神经网络结构和遗传算法流程,并结合宏观交通流模型进行系统仿真。仿真结果表明,与模糊控制相比,控制效果显著提高。  相似文献   

15.
In order to reduce the convergence time of permanent magnet linear synchronous motor (PMLSM) and improve the robustness of system, a fixed-time fractional order nonsingular terminal sliding mode control (FTFONTSMC) strategy is designed to realize the rapidity and accuracy of PMLSM position tracking response. Firstly, an improved fixed-time terminal sliding mode (FTTSM) reaching law is proposed to reduce the time of convergence. Secondly, due to the uncertainty of the disturbance in PMLSM system, an exponential convergent disturbance observer (DO) is designed to observe the disturbance. Further, finite time stability of the control system is proved by Lyapunov stability theory. Finally, the above control algorithm is applied to PMLSM, and the proposed control method's effectiveness and superiority are validated by comparing with existing control methods.  相似文献   

16.
Due to the characteristics of strong coupling and high nonlinearity in the control process, an intelligent decoupling control strategy based on recurrent fuzzy neural network (RFNN) is proposed in this paper to control the wastewater treatment process (WWTP). Firstly, the architecture of the RFNN controller is designed with a mechanism analysis of WWTP. Secondly, a decoupling strategy in combination with a gradient descent search algorithm is used to decouple the control loop of dissolved oxygen (DO) concentration and nitrate nitrogen (SNO) concentration. Finally, stability analysis based on a Lyapunov function is investigated. The proposed approach has been applied to the WWTP simulation model. Compared to model predictive control, echo state network‐based HDP (E‐HDP), conventional RFNN, and neural network on‐line modelling and controlling methods, the proposed method has better control performance.  相似文献   

17.
针对机器人辅助患肢被动康复训练过程中关节活动度(ROM)及运动控制参数不能随患肢病情实时调整的问题,提出一种新的模糊自适应关节被动运动闭环监督控制方法.该方法首先根据患肢关节活动恢复程度设计上层监督控制器,得到符合患肢病情的关节期望运动范围;再通过设计下层闭环位置跟踪控制器,控制机器人平稳地牵引患肢关节沿目标轨迹进行训练.临床实验结果验证了所提算法的有效性.  相似文献   

18.
钟斌  战仁军 《计算机仿真》2010,27(4):371-374
为了减小被控对象跟踪参考信号在边界的跟踪误差,针对不确定二阶非线性系统,并考虑到模糊控制中控制灵敏度对隶属度函数形状的要求,利用广义T-S模糊模型中广义高斯隶属函数本身对控制灵敏度的自适应性和广义T-S模糊系统,设计了自适应参数调节律和自适应模糊滑模控制器。克服和补偿了系统的建模误差,在不加监督控制和有界控制的情况下,有效地改善了控制系统在参考信号边界的跟踪性能。比较采用高斯隶属函数的T-S模糊模型,基于广义T-S模糊模型的控制系统在闭环稳定的前提下使跟踪误差收敛到了一个更小的邻域。对倒立摆二阶子系统的仿真,实验表明跟踪性能改善的效果是明显的,证明控制器的设计是合理和有效的。  相似文献   

19.
We present a combined direct and indirect adaptive control scheme for adjusting an adaptive fuzzy controller, and adaptive fuzzy identification model parameters. First, using adaptive fuzzy building blocks, with a common set of parameters, we design and study an adaptive controller and an adaptive identification model that have been proposed for a general class of uncertain structure nonlinear dynamic systems. We then propose a hybrid adaptive (HA) law for adjusting the parameters. The HA law utilizes two types of errors in the adaptive system, the tracking error and the modeling error. Performance analysis using a Lyapunov synthesis approach proves the superiority of the HA law over the direct adaptive (DA) method in terms of faster and improved tracking and parameter convergence. Furthermore, this is achieved at negligible increased implementation cost or computational complexity. We prove a theorem that shows the properties of this hybrid adaptive fuzzy control system, i.e., bounds for the integral of the squared errors, and the conditions under which these errors converge asymptotically to zero are obtained. Finally, we apply the hybrid adaptive fuzzy controller to control a chaotic system, and the inverted pendulum system  相似文献   

20.
为满足永磁直线同步电动机(PMLSM)伺服系统高速度高精度的要求,抑制不确定性对系统性能的影响,提出一种互补滑模控制(CSMC)和迭代学习控制(ILC)相结合的控制方法.该方法结合了CSMC强鲁棒性的优点和ILC跟踪精度高的特点,以CSMC中积分滑模面为基础设计新型迭代学习律,既可利用ILC对系统未建模动态进行估计,抑制端部效应、齿槽效应和摩擦力等周期不确定性的影响,又可利用CSMC减小参数变化和外部扰动等非周期不确定性对系统的影响,从而提高控制器的收敛速度和收敛精度,保证系统具有较强的速度跟踪性能.实验结果表明,该方法有效地提高了系统的动态响应能力,改善了速度跟踪精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号