首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aiming at the deficiency of conventional traffic control method, this paper proposes a new method based on multi-agent technology for traffic control. Different from many existing methods, this paper distinguishes traffic control on the basis of the agent technology from conventional traffic control method. The composition and structure of a multi-agent system (MAS) is first discussed. Then, the step-coordination strategies of intersection-agent, segment-agent, and area-agent are put forward. The advantages of the algorithm are demonstrated by a simulation study.  相似文献   

2.
A humanoid robot is always flooded by sensed information when sensing the environment, and it usually needs significant time to compute and process the sensed information. In this paper, a selective attention-based contextual perception approach was proposed for humanoid robots to sense the environment with high efficiency. First, the connotation of attention window (AW) is extended to make a more general and abstract definition of AW, and its four kinds of operations and state transformations are also discussed. Second, the attention control policies are described, which integrate intensionguided perceptual objects selection and distractor inhibition, and can deal with emergent issues. Distractor inhibition is used to filter unrelated information. Last, attention policies are viewed as the robot’s perceptual modes, which can control and adjust the perception efficiency. The experimental results show that the presented approach can promote the perceptual efficiency significantly, and the perceptual cost can be effectively controlled through adopting different attention policies.  相似文献   

3.
A direct adaptive fuzzy control algorithm is developed for a class of uncertain SISO nonlinear systems. In this algorithm, it doesn’t require to assume that the system states are measurable. Therefore, it is needed to design an observer to estimate the system states. Compared with the numerous alternative approaches with respect to the observer design, the main advantage of the developed algorithm is that on-line computation burden is alleviated. It is proven that the developed algorithm can guarantee that all the signals in the closed-loop system are uniformly ultimately bounded and the tracking error converges to a small neighborhood around zero. The simulation examples validate the feasibility of the developed algorithm. Recommended by Editorial Board member Zhong Li under the direction of Editor Young-Hoon Joo. This work is supported by National Natural Science Foundation of China under grant 60674056, 60874056, and the Foundation of Educational Department of Liaoning Province (2008312). Yan-Jun Liu received the B.S. degree in Applied Mathematics from Shenyang University of Technology in 2001. He received the M.S. degree in Control Theory and Control Engineering from Shenyang University of Technology in 2004 and the Ph.D. degree in Control Theory and Control Engineering from Dalian University of Technology, China, in 2007. His research interests include fuzzy control theory, nonlinear control and adaptive control. Shao-Cheng Tong received the B.S. degree in Department of Mathematics from Jinzhou Normal College, China, in 1982. He received the M.S. degree in Department of Mathematics from Dalian Marine University in 1988 and the Ph.D. degree in Control Theory and Control Engineering from Northeastern University, China, in 1997. His research interests include fuzzy control theory, nonlinear control, adaptive control, and system identification etc. Wei Wang received the B.S. degree in Department of Automation from Northeastern University, China, in 1982. He received the M. S. degree in Department of Automation from Northeastern University in 1984 and the Ph.D. degree in Department of Automation from Northeastern University, China, in 1988. His research interests include adaptive predictive control, intelligent control, and production scheduling method etc. Yong-Ming Li received the B.S. degree in Applied Mathematics from Liaoning University of Technology in 2004. He received the M.S. degree in Applied Mathematics from Liaoning University of Technology in 2007. His research interests include fuzzy control theory, nonlinear control and adaptive control.  相似文献   

4.
The study on nonlinear control system has received great interest from the international research field of automatic engineering. There are currently some alternative and complementary methods used to predict the behavior of nonlinear systems and design nonlinear control systems. Among them, characteristic modeling (CM) and fuzzy dynamic modeling are two effective methods. However, there are also some deficiencies in dealing with complex nonlinear system. In order to overcome the deficiencies, a novel intelligent modeling method is proposed by combining fuzzy dynamic modeling and characteristic modeling methods. Meanwhile, the proposed method also introduces the low-level learning power of neural network into the fuzzy logic system to implement parameters identification. This novel method is called neuro-fuzzy dynamic characteristic modeling (NFDCM). The neuro-fuzzy dynamic characteristic model based overall fuzzy control law is also discussed. Meanwhile the local adaptive controller is designed through the golden section adaptive control law and feedforward control law. In addition, the stability condition for the proposed closed-loop control system is briefly analyzed. The proposed approach has been shown to be effective via an example. Recommended by Editor Young-Hoon Joo. This work was jointly supported by National Natural Science Foundation of China under Grant 60604010, 90716021, and 90405017 and Foundation of National Laboratory of Space Intelligent Control of China under Grant SIC07010202. Xiong Luo received the Ph.D. degree from Central South University, Changsha, China, in 2004. From 2005 to 2006, he was a Postdoctoral Fellow in the Department of Computer Science and Technology at Tsinghua University. He currently works as an Associate Professor in the Department of Computer Science and Technology, University of Science and Technology Beijing. His research interests include intelligent control for spacecraft, intelligent optimization algorithms, and intelligent robot system. Zengqi Sun received the bachelor degree from Tsinghua University, Beijing, China, in 1966, and the Ph.D. degree from Chalmers University of the Technology, Gothenburg, Sweden, in 1981. He currently works as a Professor in the Department of Computer Science and Technology, Tsinghua University. His research interests include intelligent control of robotics, fuzzy neural networks, and intelligent flight control. Fuchun Sun received the Ph.D. degree from Tsinghua University, Beijing, China, in 1998. From 1998 to 2000, he was a Postdoctoral Fellow in the Department of Automation at Tsinghua University, where he is currently a Professor in the Department of Computer Science and Technology. His research interests include neural-fuzzy systems, variable structure control, networked control systems, and robotics.  相似文献   

5.
Mobility management is a challenging topic in mobile computing environment. Studying the situation of mobiles crossing the boundaries of location areas is significant for evaluating the costs and performances of various location management strategies. Hitherto, several formulae were derived to describe the probability of the number of location areas‘ boundaries crossed by a mobile. Some of them were widely used in analyzing the costs and performances of mobility management strategies. Utilizing the density evolution method of vector Markov processes, we propose a general probability formula of the number of location areas‘ boundaries crossed by a mobile between two successive calls. Fortunately, several widely-used formulae are special cases of the proposed formula.  相似文献   

6.
In this paper, we present a control method for a quadruped walking robot inspired from the locomotion of quadrupeds. A simple and useful framework for controlling a quadruped walking robot is presented, which is obtained by observing the stimulus-reaction mechanism, the gravity load receptor and the manner of generating repetitive motions from quadrupeds. In addition, we propose a new rhythmic pattern generator that can relieve the large computational burden on solving the kinematics. The proposed method is tested via a dynamic simulation and validated by implementation in a quadruped walking robot, called AiDIN-I (Artificial Digitigrade for Natural Environment I). Recommended by Editorial Board member Sangdeok Park under the direction of Editor Jae-Bok Song. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-D00031). Ig Mo Koo received the B.S. degree in Mechanical Engineering from Myongji University, Yongin, Korea, in 2003, the M.S. degree in Mechanical Engineering from the Sungkyunkwan University, Suwon, Korea, in 2005, where he is currently working toward a Ph.D. degree in Mechanical Engineering from Sungkyunkwan University. His research interests include artificial muscle actuators, haptics, tactile display, biomimetics and quadruped walking robots systems. Tae Hun Kang received the B.S., M.S., and Ph.D. degrees in Mechanical Engineering from Sungkyunkwan University, Korea, in 2000, 2002, and 2006, respectively. His current research interests focus on biomimetics and quadruped walking robot. Gia Loc Vo received the B.S degree in Mechanical Engineering form Ha Noi University of Technology in Vietnam 2003, the M.S. degree Mechanical Engineering form Sungkyunkwan University, Suwon, Korea, in 2006, where he is currently working toward a Ph.D. degree in Mechanical Engineering from Sungkyunkwan University. His research interests include legged locomotion, walking and climbing robot. Tran Duc Trong received the B.S degree in Mechatronics from HoChiMinh City University of Technology in Vietnam in 2005, where he is currently working toward a M.S. degree in Mechanical Engineering from Sungkyunkwan University. His research interests include biological inspired control and adaptive control of quadruped walking robot. Young Kuk Song received the B.S. degree in Mechanical Engineering from Sungkyunkwan University, Suwon, Korea, in 2006, where he is currently working toward a M.S. degree in Mechanical Engineering from Sungkyunkwan University. His research interests include biomimetics, hydraulic robotics system and quadruped walking robot. Hyouk Ryeol Choi received the B.S. degree from Seoul National University, Seoul, Korea, in 1984, the M.S. degree from the Korea Advanced Technology of Science and Technology (KAIST), Daejeon, Korea, in 1986, and the Ph.D. degree from the Pohang University of Science and Technology (POSTECH), Pohang, Korea, in 1994. Since 1995, he has been with Sungkyunkwan University, Suwon, Korea, where he is currently a Professor in the School of Mechanical Engineering. He was an Associate Engineer with LG Electronics Central Research Laboratory, Seoul, Korea, from 1986 to 1989. From 1993 to 1995, he was with Kyoto University, Kyoto, Japan, as a grantee of scholarship funds from the Japanese Educational Administry. He visited the Advanced Institute of Industrial Science Technology (AIST), Tsukuba, Japan, as a JSPS Fellow from 1999 to 2000. He is now an Associate Editor in IEEE Transactions on Robotics, Journal of Intelligent Service Robotics, International Journal of Control, Automation and Systems (IJCAS). His interests includes dexterous mechanisms, field application of robots, and artificial muscle actua tors.  相似文献   

7.
ARMiner: A Data Mining Tool Based on Association Rules   总被引:3,自引:0,他引:3       下载免费PDF全文
In this paper,ARM iner,a data mining tool based on association rules,is introduced.Beginning with the system architecture,the characteristics and functions are discussed in details,including data transfer,concept hierarchy generalization,mining rules with negative items and the re-development of the system.An example of the tool‘s application is also shown.Finally,Some issues for future research are presented.  相似文献   

8.
This paper addresses the design problem of robust iterative learning controllers for a class of linear discrete-time systems with norm-bounded parameter uncertainties. An iterative learning algorithm with current cycle feedback is proposed to achieve both robust convergence and robust stability. The synthesis problem of the proposed iterative learmng control (ILC) system is reformulated as a γ-suboptimal H-infinity control problem via the linear fractional transformation (LFT). A sufficient condition for the convergence of the ILC algorithm is presented in terms of linear matrix inequalities (LMIs). Furthermore, the linear wansfer operators of the ILC algorithm with high convergence speed are obtained by using existing convex optimization techniques. The simulation results demonstrate the effectiveness of the proposed method.  相似文献   

9.
There is an unavoidable tradeoff between the control performance and the quality of service in networked control systems with resource constraints. To address the impact of network resources availability on requirement of bandwidth (RoB) and quality of control (QoC), an intelligent control approach to dynamic bandwidth management, namely fuzzy bandwidth management, is proposed based on fuzzy logic control technique. In order to guarantee the system’s stability, the lower and upper bound of the assignable bandwidth are evaluated in terms of linear matrix inequalities and the resource constraints, respectively. In addition, the normalizable criterions of QoC and RoB are also defined, which can estimate the performance of the whole networked control systems. Preliminary simulations are carried out to highlight the merits of the proposed approach. It is argued that the proposed approach can save significant bandwidth and simultaneously improve overall control performance in comparison with the fixed bandwidth allocation and optimal bandwidth allocation. Recommended by Editorial Board member Young Il Lee under the direction of Editor Young-Hoon Joo. This work was supported by the National Natural Science Foundation of China under Grants 60573123, 60872057, and by the Zhejiang Provincial Natural Science Foundation of China under grant Y107293. Zuxin Li received the B.Eng. degree from Zhejiang University of Technology, China, in 1995, the M.Sc. (Eng.) degree from Yunnan Univer-sity, China, in 2002, and the Ph.D. degree from Zhejiang University of Technology, China, in 2008. He is currently an Associate Professor in the School of Information Engineering, Huzhou Teachers College, China. His research interests include networked control systems and intelligent control. Wanliang Wang received the Ph.D. degree from Tongji University, China, in 2001. He is currently a Professor in Zhejiang University of Technology, China. His research interests include computer control, computer net, CMIS, and production scheduling. Yunliang Jiang received the B.S. degree in Mathematics from Zhejiang Normal University in 1989, and the M.E. and Ph.D. degrees in Computer Science and Technology from Zhejiang University, Hangzhou, China. He is currently a Professor in the School of Information Engineering, Huzhou Teachers College, China. His research interests include information fusion, artificial intelligence, and geographic information system.  相似文献   

10.
This paper introduces the design and implemetation of BCL-3,a high performance low-level communication software running on a cluster of SMPs(CLUMPS) called DAWNING-3000,BCL-3 provides flexible and sufficient functionality to fulfill the communication requirements of fundamental system software developed for DAWNING-3000 while guaranteeing security,scalability,and reliability,Important features of BCL-3 are presented in the paper,including special support for SMP and heterogeneous network environment,semiuser-level communication,reliable and ordered data transfer and scalable flow control,The performance evaluation of BCL-3 over Myrinet is also given.  相似文献   

11.
Traditional filtering theory is always based on optimization of the expected value of a suitably chosen function of error, such as the minimum mean-square error (MMSE) criterion, the minimum error entropy (MEE) criterion, and so on. None of those criteria could capture all the probabilistic information about the error distribution. In this work, we propose a novel approach to shape the probability density function (PDF) of the errors in adaptive filtering. As the PDF contains all the probabilistic information, the proposed approach can be used to obtain the desired variance or entropy, and is expected to be useful in the complex signal processing and learning systems. In our method, the information divergence between the actual errors and the desired errors is chosen as the cost function, which is estimated by kernel approach. Some important properties of the estimated divergence are presented. Also, for the finite impulse response (FIR) filter, a stochastic gradient algorithm is derived. Finally, simulation examples illustrate the effectiveness of this algorithm in adaptive system training. Recommended by Editorial Board member Naira Hovakimyan under the direction of Editor Jae Weon Choi. This work was supported in part by the National Natural Science Foundation of China under grants 50577037 and 60604010. Badong Chen received the B.S. and M.S. degrees in Control Theory and Engineering from Chongqing University, Chongqing, China, in 1997 and 2003, respectively, and the Ph.D. degree in Computer Science and Technology from Tsinghua University, Beijing China, in 2008. He is currently a Postdoctor of the Institute of Manufacturing Engineering, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing, China. His research interests are in signal processing, adaptive control, and information theoretic aspects of control systems. Yu Zhu received the B.S. of Radio Electronics in 1983 at Beijing Normal University, and the M.S. of Computer Applications in 1993, and the Ph.D. of Mechanical Design and Theory in 2001 at China University of Mining & Technology. He is now a Professor of the Institute of Manufacturing Engineering of Department of Precision and Mechanology of Tsinghua University. His current research interests are parallel machanism and theory, two photon micro-fabrication, ultra-precision motion system and motion control. Jinchun Hu received the Ph.D. in Control Science and Engineering from Nanjing University of Science and Technology, Nanjing, China, in 1998. Since then, he has been a postdoctoral researcher in Nanjing University of Aeronautics and Astronautics in 1999 and Tsinghua University in 2002 respectively. His research interests are in flight control, aerial Robot and intelligent control. Dr. Hu is currently an Associate Professor of the Department of Computer Science and Technology of Tsinghua University, Beijing, China. Zengqi Sun received the B.S. degree from the Department of Automatic Control, Tsinghua University, Beijing, China, in 1966 and the Ph.D. degree in Control Engineering from the Chalmas University of Technology, Sweden, in 1981. He is currently a Professor of the Department of Computer Science and Technology, Tsinghua University, Beijing, China. He is the author or coauthor of more than 100 paper and eight books on control and robotics. His research interests include robotics, intelligent control, fuzzy system, neural networks, and evolutionary computation.  相似文献   

12.
The capability to perform fast load-following has been an important issue in the power industry. An output tracking control system of a boiler-turbine unit is developed. The system is composed of stable inversion and feedback controller. The stable inversion is implemented as a feedforward controller to improve the load-following capability, and the feedback controller is utilized to guarantee the stability and robustness of the whole system. Loop-shaping H∞ method is used to design the feedback controller and the final controller is reduced to a multivariable PI form. The output tracking control system takes account of the multivariable, nonlinear and coupling behavior of boiler-turbine system, and the simulation tests show that the control system works well and can be widely applied.  相似文献   

13.
In-pipe robot based on selective drive mechanism   总被引:3,自引:0,他引:3  
This paper presents an in-pipe robot, called MRINSPECT V (Multifunctional Robotic crawler for In-pipe inSPECTion V), which is under development for the inspection of pipelines with a nominal 8-inch inside diameter. To travel freely in every pipeline element, the robot adopts a differential driving mechanism that we have developed. Furthermore, by introducing clutches in transmitting driving power to the wheels, MRINSPECT V is able to select the suitable driving method according to the shape of the pipeline and save the energy to drive in pipelines. In this paper, the critical points in the design and construction of the proposed robot are described with the preliminary results that yield good mobility and increased efficiency. Recommended by Editorial Board member Dong Hwan Kim under the direction of Editor Jae-Bok Song. This work was supported by the Postdoctoral Research Program of Sungkyunkwan University (2008). Se-gon Roh received the B.S., M.S., and Ph.D degrees in Mechatronics Engineering from Sungkyunkwan University, Korea, in 1997, 1999, and 2006 respectively, and is currently a Researcher of the School of Mechanical Engineering also at Sungkyunkwan University. His research interests include mechanism design, applications of mobile robots, and in-pipe robots. Do Wan Kim received the B.S. degree in Mechanical Engineering from Sungkyunkwan University, Korea, in 2007. He is currently working toward a M.S. degree in Mechanical Engineering also at Sungkyunkwan University. His research interests include field robotics, in-pipe robots, and autonomous mobile robots. Jung-Sub Lee received the B.S. degree in Mechanical Engineering in 2008 from Sungkyunkwan University, Suwon, Korea, where he is currently working toward a M.S. degree in mechatronics engineering. His research interests include robot mechanism design, automation, and in-pipe robot. Hyungpil Moon received the B.S. and M.S. degrees in Mechanical Engineering from POSTECH in 1996 and 1998 respectively, and Ph.D. degree in Mechanical Engineering from University of Michigan in 2005. He joined the faculty of School of Mechanical Engineering in Sungkyunkwan University as a Full-time Lecturer in 2008. He was a Post-doctoral fellow at Carnegie Mellon University, Robotics Institute until November 2007. His research interests include distributed manipulation, multiple robot navigation, SLAM, and biomimetic robotics. Hyouk Ryeol Choi received the B.S. degree from Seoul National University in 1984, the M.S. degree from Korea Advanced Technology of Science and Technology (KAIST) in 1986, and the Ph.D. degree from Pohang University of Science and Technology (POSTECH) in 1994, Korea. Since 1995, he has been with Sungkyunkwan University, where he is currently a Professor of the School of Mechanical Engineering. He worked as an Associate Engineer with LG Electronics Central Research Laboratory from 1986 to 1989. From 1993 to 1995, he was with Kyoto University as a grantee of a scholarship from the Japanese Educational Ministry. He visited Advanced Institute of Industrial Science Technology (AIST), Japan as the JSPS Fellow, from 1999 to 2000. He is now an Associate Editor of IEEE Transactions on Robotics, International Journal of Control, System, Automation(IJCAS), and International Journal of Intelligent Service Robots (JISR). His interests include dexterous mechanisms, field applications of robots, and artificial muscle actuator.  相似文献   

14.
In micro-manipulations, force sensing devices play an important role in the control and the assembly of micro-objects. To protect these micro-objects from damage, we must have the ability to detect the value of the minute amount of interactive force (about a few μN) upon contact between the tip and the object. To detect this micro-force, we need an optimized design of force sensor to increase the strain values at the positions we place sensing components. Stress concentration can effectively amplify the strain values measured by the force sensors. This paper investigates the effect that the notches have on increasing the strain values at the positions we attach the sensing elements. In addition, the optimal design with a flexible structure improves the sensitivity of the sensor. An algorithm that can calculate both contact force and contact position on the sensor tip is also mentioned. Besides, an optimal location of strain gauges will ensure the accuracy and stability of the measurement. Finally, analysis and experiment are done to verify the proposed idea. Recommended by Editorial Board member Dong Hwan Kim under the direction of Editor Jae-Bok Song. This research was supported by the Ministry of Knowledge Economy and Korean Industrial Technology Foundation through the Human Resource Training Project for Strategic Technology. Tri Cong Phung received the B.S. degree in Mechanical Engineering from the HCM University of Technology, Vietnam in 2004 and the M.S. degree in Mechanical Engineering from Sungkyunkwan University in 2007. He is currently working toward a Ph.D. degree in Intelligent Robotics and Mechatronic System Laboratory (IRMS Lab), Mechanical Engineering from Sungkyunkwan University. His research interests include dexterous manipulation and touch sensors. Seung Hwa Ha received the B.S. degree in Korean University of Technology and Education, Korea in 2004. He received the M.S. degree in Mechanical Engineering from Sungkyunkwan University in 2008. He is currently working in Samsung Electronic Co. Ltd. His research interests are about strain gauge and high precision control. Yong Seok Ihn received the B.S. degree in School of Mechanical Engineering from the Sungkyunkwan University, Korea in 2006. He received the M.S. degree in Mechanical Engineering from the Sungkyunkwan University, in 2008. He is currently working toward a Ph. D. degree in the Computer Aided Modeling & Simulation Laboratory (CAMAS Lab), School of Mechanical Engineering at the Sungkyunkwan University in Korea. His research interests are precision mechatronics, dynamic system modeling, and control. Byung June Choi received the B.S. degree in School of Mechanical Engineering from the Sungkyunkwan University, Korea in 2002. He received the M.S. degree in Mechanical Engineer-ing from the Sungkyunkwan University, in 2005. He is currently working toward a Ph.D. degree in the Intelligent Robotics and Mechatronic System Laboratory (IRMS Lab), School of Mechanical Engineering at the Sungkyunkwan University in Korea. His research interests are mechanisms design, multi-robot system control, cooperation, path planning and task allocation algorithm. Sang Moo Lee was born in Seoul, Korea and educated in Seoul. He received the Ph.D. degree from the Seoul National University in Korea, in 1999. He is currently a Principal Researcher of Division for Applied Robot Technology at Korean Institute of Industrial Technology. His research interests include high-precision robot control, motion field network, and location system in outdoor environment for robots. Ja Choon Koo is an Associate Professor of School of Mechanical Engineering in Sungkyunkwan University in Korea. His major researches are in the field of design, analysis, and control of dynamics systems, especially micro precision mechatronic systems and energy transducers. He was an Advisory Engineer for IBM, San Jose, California, USA and a Staff Engineer for SISA, San Jose, CA, USA. He received the Ph.D. and M.S. degrees from the University of Texas at Austin and the B.S. from Hanyang University, Seoul, Korea. Hyouk Ryeol Choi received the B.S. degree from Seoul National University, Seoul, Korea, in 1984, the M.S. degree from Korea Advanced Institute of Science and Technology (KAIST), Daejon, Korea, in 1986, and the Ph.D. degree from Pohang University of Science and Technology (POSTECH), Pohang, Korea, in 1994, all in Mechanical Engineering. From 1986 to 1989, he was an Associate Engineer at LG Electronics Central Research Laboratory, Seoul. From 1993 to 1995, he was at Kyoto University, Kyoto, Japan, as a Grantee of scholarship from the Japanese Educational Ministry. From 2000 to 2001, he visited Advanced Institute of Industrial Science Technology (AIST), Tsukuba, Japan, as a Japan Society for the Promotion of Sciences (JSPS) Fellow. Since 1995, he has been with Sungkyunkwan University, Suwon, Korea, where he is currently a Professor in the School of Mechanical Engineering. He is an Associate Editor of the Journal of Intelligent Service Robotics and International Journal of Control, Automation and Systems (IJCAS), and IEEE Transactions on Robotics. His current research interests include dexterous mechanism, field application of robots, and artificial muscle actuators.  相似文献   

15.
A ship, as an object of course control, is characterized by a nonlinear function describing the static maneuvering characteristics. The backstepping method is one of the methods that can be used during the designing process of a nonlinear course controller for ships. The method has been used for the purpose of designing two configurations of nonlinear controllers, which were then used to control the ship course. One of the configurations took dynamic characteristic of a steering gear into account during the designing stage. The parameters of the obtained nonlinear control structures have been tuned to optimise the operation of the control system. The optimisation process has been performed by means of genetic algorithms. The quality of operation of the designed control algorithms has been checked in simulation tests performed on the mathematical model of a tanker. The results of simulation experiments have been compared with the performance of the system containing a conventional proportional-derivative (PD) controller.  相似文献   

16.
This paper investigates the problem of global robust stabilization for a wide class of nonlinear systems, called polynomial lower-triangular form (pLTF), which expands LTF to a more general case. The aim is explicitly constructing the smooth controller for the class of systems with static uncertainties, by adding and modifying a power integrator in a recursive manner. The pLTF relaxes the restrictions on the structure of the normal LTF and enlarges the family of systems that are stabilizable. Examples are also provided to show the practical usage of this class of systems and the effectiveness of the design method. Recommended by Editorial Board member Hyungbo Shim under the direction of Editor Jae Weon Choi. Bing Wang received the B.S. degree from the Huazhong University of Science and Technology, and the Ph.D. degree from the University of Science and Technology of China, in 1998 and 2006, respectively. He is currently working in College of Electrical Engineering, Hohai University. His research interests include robust control, nonlinear control and power systems. Haibo Ji received the B.S. and Ph.D. degrees in Mechanical Engineering from ZheJiang University and Beijing University in 1984 and 1990 respectively. He is currently a Professor in the Dept. of Automation, USTC. His research interests include nonlinear control and adaptive control. Jin Zhu received the B.S. and Ph.D. degrees in Control Science and Engineering from University of Science & Technology of Chinain 2001 and 2006 respectively. He is currently a Post-doc in Han-Yang University, Korea. His research interests include Markovian jump systems and nonlinear control.  相似文献   

17.
A new cleaning robot system for suspension insulator strings was developed to prevent a power failure, which can have severe effects on the national industry and economy. Compared with existing cleaning robots using jets of water or water/air, this robot mechanism is superior in insulation as it uses a porcelain-clamping method, and is more useful in mountainous or salt damage areas by adopting a dry cleaning method without water. In addition, in order to increase its cleaning efficiency and to prevent arc generation under live-line conditions, a set of mechanized brush bristles and a voltage-balancing contactor are devised, respectively. Moreover, a manual device for its installation and removal is presented. We confirmed its effectiveness through experiments. Recommended by Editorial Board member Hyoukryeol Choi under the direction of Editor Jae-Bok Song. This work was supported by Electric Power Industry R&D Project performed by Ministry of Commerce, Industry and Energy in Korea. Joon-Young Park received the B.S. degree in Electrical Engineering in 1995, and the M.S. and Ph.D. degrees in Mechanical Engineering from Korea Advanced Institute of Science and Technology (KAIST) in 1997 and 2004, respectively. He is now a Senior Researcher at the Strategic Technology Laboratory in Korea Electric Power Research Institute (KEPRI). His research interests include the robust control of nonlinear systems, the optimum kinematic design of robot manipulators as well as robot systems for the electric power industry. Byung-Hak Cho received the B.S. degree in Electrical Engineering from Hanyang University, Seoul, Korea, in 1982, and the M.S. and Ph.D. degrees in Nuclear Engineering from KAIST, Daejeon, Korea, in 1986 and 1996, respectively. He is now a Chief Researcher at the Strategic Tech-nology Laboratory in KEPRI, Daejeon, Korea. His research interests include robot systems for the electric power industry. Seung-Hyun Byun received the B.S. degree in Electrical Engineering from Yonsei University, Seoul, Korea, in 1992, and the M.S. degree in Electrical Engineering from KAIST, Daejeon, Korea, in 1994. He is now a Senior Researcher at the Power Generation Laboratory in KEPRI, Daejeon, Korea. His research interests include control system design, signal processing and artificial intelligence. Jae-Kyung Lee received the B.S. degree in Electrical Engineering from Kyungpook National University, Daegu, Korea, in 2002, and M.S. the degree in Electrical Engineering from KAIST, Daejeon, Korea, in 2004. He is now a Researcher at the Strategic Technology Laboratory in KEPRI, Daejeon, Korea. His research interests include the development of high-performance robot control and hazardous robot systems.  相似文献   

18.
1 IntroductionLet G = (V, E) be a connected, undirected graph with a weight function W on the set Eof edges to the set of reals. A spanning tree is a subgraph T = (V, ET), ET G E, of C suchthat T is a tree. The weight W(T) of a spanning tree T is the sum of the weights of its edges.A spanning tree with the smallest possible'weight is called a minimum spanning tree (MST)of G. Computing an MST of a given weighted graph is an important problem that arisesin many applications. For this …  相似文献   

19.
This article investigates the problem of robust stability for neural networks with time-varying delays and parameter uncertainties of linear fractional form. By introducing a new Lyapunov-Krasovskii functional and a tighter inequality, delay-dependent stability criteria are established in term of linear matrix inequalities (LMIs). It is shown that the obtained criteria can provide less conservative results than some existing ones. Numerical examples are given to demonstrate the applicability of the proposed approach. Recommended by Editorial Board member Naira Hovakimyan under the direction of Editor Young-Hoon Joo. This work was supported by the National Science foundation of China under Grant no. 60774013 and Key Laboratory of Education Ministry for Image Processing and Intelligent Control under grant no. 200805. Tao Li received the Ph.D. degree in The Research Institute of Automation Southeast University, China. Now He is an Assistant Professor in Department of Information and Communication, Nanjing University of Information Science and Technology. His current research interests include time-delay systems, neural networks, robust control, fault detection and diagnosis. Lei Guo received the Ph.D. degree in the Research Institute of Automation Southeast University, China. From 1999 to 2004, he has worked at Hong Kong University, IRCCyN (France), Glasgow University, Loughborough University and UMIST, UK. Now He is a Professor in School of Instrument Science and Opto-Electronics Engineering, Beihang University. His current research interests include robust control, fault detection and diagnosis. Lingyao Wu received the Ph.D. degree in The Research Institute of Automation Southeast University, China. Now He is an Assistant Professor in the Research Institute of Automation Southeast University. His current research interests include time-delay systems, neural networks, robust control, fault detection and diagnosis. Changyin Sun received the Ph.D. degree in the Research Institute of Automation Southeast University, China. Now He is a Professor in the Research Institute of Automation Southeast University. His current research interests include timedelay systems, neural networks.  相似文献   

20.
In the part 2 of advanced Audio Video coding Standard (AVS-P2), many efficient coding tools are adopted in motion compensation, such as new motion vector prediction, symmetric matching, quarter precision interpolation, etc. However, these new features enormously increase the computational complexity and the memory bandwidth requirement, which make motion compensation a difficult component in the implementation of the AVS HDTV decoder. This paper proposes an efficient motion compensation architecture for AVS-P2 video standard up to the Level 6.2 of the Jizhun Profile. It has a macroblock-level pipelined structure which consists of MV predictor unit, reference fetch unit and pixel interpolation unit. The proposed architecture exploits the parallelism in the AVS motion compensation algorithm to accelerate the speed of operations and uses the dedicated design to optimize the memory access. And it has been integrated in a prototype chip which is fabricated with TSMC 0.18-#m CMOS technology, and the experimental results show that this architecture can achieve the real time AVS-P2 decoding for the HDTV 1080i (1920 - 1088 4 : 2 : 0 60field/s) video. The efficient design can work at the frequency of 148.5MHz and the total gate count is about 225K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号