共查询到19条相似文献,搜索用时 52 毫秒
1.
PA6在紫外光老化中的变色与结构变化 总被引:1,自引:0,他引:1
通过挤出共混法制备了添加不同耐紫外光助剂的尼龙6(PA6)。考察了PA6试样在紫外光照射192 h后其黄色指数(YI)与红外光谱(FTIR-ATR)谱图的变化;分别研究了单独加入抗氧剂、紫外光吸收剂和紫外光稳定剂的PA6试样在紫外光老化过程中的变色行为;在此基础上,复配与优化了含有抗氧剂、紫外光吸收剂与紫外光稳定剂的耐紫外老化的PA6的稳定体系。结果表明:紫外光吸收剂与紫外光稳定剂能明显地延缓PA6的紫外光老化;由酚类抗氧剂/亚磷酸酯抗氧剂(质量比1/1)、紫外光吸收剂Tinuvin 234和紫外光稳定剂Tinuvin 123组成的稳定体系能产生协同效应,使PA6试样具有最佳的耐紫外老化变色性能。 相似文献
2.
采用熔融共混改性技术制备了尼龙66/尼龙6/尼龙6I-6T/玻璃纤维(PA66/PA6/PA6I-6T/GF)复合材料,研究了PA6对复合材料表面状况、力学性能、热学性能等的影响。结果表明:当玻璃纤维含量60份,PA66/PA6用量比为21/5时,复合材料表面光滑,“浮纤”问题得到解决。与不含PA6的复合材料相比,当加入5份PA6时,复合材料的拉伸强度和弯曲强度从210 MPa和294 MPa下降至205 MPa和291 MPa,而弯曲模量和冲击强度从15.6 GPa和8.4 kJ/m2提高至17.2 GPa和9.9 kJ/m2。加入5份PA6时,复合材料的热变形温度从208℃下降至204℃,而熔融温度从251℃下降至225℃,熔体流动性提高至原来的2.3倍,对应的样品表面光滑。研究表明:在高玻纤含量(60份)时,加入5份PA6能够改善PA66/PA6I-6T/GF复合材料的“浮纤”现象,而且不会影响复合材料的使用性能。 相似文献
3.
采用原子转移自由基聚合(ATRP)法合成低相对分子质量、相对分子质量分布较窄的聚苯乙烯(PS),以PS、Br2为原料,AlCl3作催化剂,CH2Cl2为溶剂,低温反应5~6h合成低相对分子质量溴化聚苯乙烯(BPS),用于对PA6进行阻燃。考察了反应条件对聚合过程及产物性能的影响,并研究了阻燃PA6的流变性能、力学性能、阻燃性能。结果表明,随着阻燃剂含量的增加,PA6的阻燃性能和流变性能均有较大提高,力学性能下降较少,当在PA6中添加质量分数为19%的BPS和Sb2O3复合阻燃剂时,阻燃PA6能够达到UL94V-0级,满足家用电器的阻燃法规,而且此时体系的综合性能也较好。 相似文献
4.
以阻燃剂FRM、MCA,增效剂Sb_2O。为阻燃体系,以玻璃纤维作增强剂,采用ZSK双螺杆挤出机制备阻燃增强PA66。其阻燃性能可达UL94V—0级,力学性能也有显著提高,本文还对三种改性PA66的性能作了比较,同时阐述了阻燃增强PA66的加工机理及应用前景。 相似文献
5.
采用X射线光电子能谱仪及透射电子显微镜表征了自制微胶囊化次磷酸铝(T-AlHP)的包覆状况,并将其与三聚氰胺氰尿酸盐(MCA)复配阻燃玻璃纤维增强聚酰胺6(GFPA 6)。结果表明:T-AlHP表面包覆了一层囊壁材料;w(T-AlHP)为20%时,阻燃GFPA6复合材料的阻燃性能达到UL 94 V-0级,与纯GFPA 6相比,复合材料的最大质量损失速率下降6.64%/min;w(MCA)和w(T-AlHP)均为10%时,复合材料的拉伸强度、断裂拉伸应变及悬臂梁缺口冲击强度分别为126.35 MPa,3.95%,8.82 kJ/m2。 相似文献
6.
7.
无卤阻燃增韧增强PA66的研究进展 总被引:1,自引:0,他引:1
尼龙66作为重要的工程塑料,在汽车和电子等行业有着广泛的应用,开发无卤阻燃增强增韧技术是目前尼龙66改性领域的一个新热点。文章综述了近年来尼龙66改性及无卤阻燃的研究与进展,为研究无卤阻燃增强增韧的尼龙66提供一定的理论指导。 相似文献
8.
10.
研究了以聚磷酸铵(APP)、三聚氰胺(MA)和层状复合金属氢氧化物(LDH)复配得到的膨胀阻燃剂(IFR)对聚丙烯/尼龙6(PP/PA6)合金性能的影响,分析了不同阻燃体系对PP/PA6合金的阻燃性能、力学性能、热性能和微观形态的影响。结果表明,当APP/MA/LDH为21.0/7.5/1.5(质量比)时,PP/PA6合金具有较好的阻燃性能并能保持较高的力学性能。LDH可以提高阻燃材料的热稳定性和残炭量,而且SEM照片显示炭层微观形态为“面包”状的膨松状。 相似文献
11.
12.
新型磷氮阻燃剂对尼龙6的阻燃作用 总被引:2,自引:0,他引:2
研究了一种基于烷基次磷酸铝的新型磷氮阻燃剂(OP)对尼龙6(PA6)的阻燃作用。试验结果表明:该阻燃剂对PA6具有良好的阻燃作用,当其添加质量分数为25%时,PA6的氧指数(LOI)大于30%,阻燃级别达到FV-0级,燃烧时材料的热释放速率、质量损失速率和总热释放量明显降低。热重分析结果表明:OP改变了PA6的热降解过程,使之成炭化学反应提前,形成的炭层通过隔热和隔氧而产生阻燃作用。添加OP对材料的机械性能有些影响,如弯曲强度和弯曲模量有所增加,而拉伸强度和冲击功有所下降,但影响不大。 相似文献
13.
尼龙增强膨胀型阻燃PP的研究 总被引:5,自引:0,他引:5
用尼龙6(PA6)代替部分季戊四醇(PT)作成炭剂,制得了膨胀型阻燃聚丙烯(IFR-PP),讨论了PA6对IFR-PP的力学性能、阻燃性能、热稳定性和流变行为的影响。结果表明:PA6的加入提高了IFR-PP的表观粘度、力学性能和热稳定性。PA6的用量为3%时,IFR-PP的拉伸强度提高了24.2%,分解温度提高了18℃;同时阻燃性能保持不变,且具有良好的加工性能。 相似文献
14.
15.
聚丙烯/尼龙/纳米蒙脱土膨胀型阻燃材料的研究 总被引:7,自引:0,他引:7
用尼龙6(PA6)代替季戊四醇(PT)作为成炭剂组成的膨胀型阻燃聚丙烯(PP)有熔滴、阻燃效果差的缺点,加入纳米蒙脱土(nano-MMT)作为阻燃剂的协效剂后可克服以上缺点。研究结果表明:加入质量分数为4%的nano-MMT不仅克服了阻燃体系熔滴的缺点,还使材料的拉伸强度提高了44.3%;热重分析和燃烧测试表明,nano-MMT的加入提高了材料的热稳定性,使剩炭率增加了12%,从而提高了材料的阻燃性能;由扫描电镜(SEM)观察发现:nano-MMT的加入增强了材料的界面粘结力,提高了材料的韧性,起到了一定的增容作用。 相似文献
16.
17.
采用尼龙6(PA6)代替季戊四醇(PT)作成炭剂组成新型的膨胀型阻燃剂(IFR),用熔融插层法成功制备了聚丙烯(PP)/PA6/有机化蒙脱石(OMMT)新型膨胀型纳米复合阻燃材料。用X射线衍射分析(XRD)和扫描电镜(SEM)观察OMMT层间距的变化和材料的微观结构,用热重分析(TG)、极限氧指数(LOI)测试和垂直水平燃烧测试研究了其阻燃性能,并考察了纳米复合材料的力学性能。研究结果表明,OMMT的层间距由2.200nm扩大到2、800nm,加入质量分数为4%-6%的OMMT的复合材料不仅使材料的拉伸强度和冲击强度提高了15%和69.5%,还提高了材料的阻燃性能,使剩炭率增加了12.32%,LOI达到22%,燃烧测试达HB级,其综合性能最佳。 相似文献
18.
19.
研究了不同配比的红磷阻燃母料(RPM)与氢氧化镁(MH)协同阻燃高抗冲聚苯乙烯(HIPS)体系的阻燃性能和机械性能。并选取最佳红磷阻燃母料与氢氧化镁的配比,再分别与其他无卤阻燃剂如酚醛树脂、氧化锌、氰尿酸三聚氰胺盐、有机纳米蒙脱土复配来共同阻燃HIPS,并分别对其体系的机械性能和阻燃性能进行了研究。结果表明,在RPM/MH质量比为1,总质量分数为30%时,与7%的酚醛树脂或有机纳米蒙脱土复配,都可以使阻燃HIPS材料达到1.6 mm UL94的V-1级。 相似文献