首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
某双螺杆挤出机的螺杆在运行过程中发生早期断裂,通过断口的宏观观察和扫描电镜观察、化学成分分析、显微组织观察、力学性能测试和有限元模拟,找出了螺杆轴断裂失效的原因。结果表明:螺杆轴发生了扭转疲劳断裂,裂纹起源于齿根,且有多个疲劳源;芯轴的花键齿根部是螺杆轴应力集中的部位;热处理工艺欠佳导致材料内部微孔聚集、组织不均匀,这些因素最终致使螺杆轴发生早期疲劳断裂。  相似文献   

2.
本文采用宏、微观检验和硬度检测的分析方法,对国产某电动车减速器在台架试验中输入轴发生齿轮断裂进行原因分析,并且与国外生产的同产品输入轴齿轮进行比较。结果表面,国产输入轴齿轮发生断裂为疲劳断裂,产生疲劳断裂的主要原因是由于国产输入轴齿轮齿根位置加工较为粗糙,在齿根位置存在较大的应力集中,而电动车制动能量回收工况对齿根的反复冲击加剧了断齿发生概率,同时齿根位置的大量黑色组织使得齿根位置硬度明显偏低,降低了齿轮的疲劳寿命。  相似文献   

3.
以国产某轿车变速箱齿轮为例,对表面强化后齿根附近沿深度的残余应力和硬度的分布预测疲劳强度分布和疲劳裂纹萌生区域进行了详细的研究.变速箱齿轮经过表面强化后,通过齿根附近沿深度的残余应力、硬度分布以及强度和硬度之间的转换关系,得到了齿根附近沿深度的弯曲疲劳极限分布,齿根次表面下0.25mm~0.45mm之间的区域是疲劳危险区,疲劳裂纹萌生从此区域开始,并得到了微观的初步验证,为进一步研究齿轮弯曲疲劳断裂机制和齿轮表面强化工艺提供了理论参考依据.  相似文献   

4.
采用形貌观察、化学成分分析、金相检验、硬度测试和有效硬化层深测量等方法,对某型号载重车后桥从动齿轮在运行中出现齿部断裂和齿面剥落现象进行了分析.结果表明:齿轮失效原因在于齿轮齿根部有较深的切削沟槽,导致齿根部应力加大,形成裂纹源,并产生高周疲劳引起齿根部断裂,进而波及其它齿产生断裂和剥落;同时也存在齿轮润滑油选用不当的...  相似文献   

5.
飞机电源系统的恒速传动装置齿轮在装机使用124h后发生断裂失效;用体视显微镜、SEM、EDS等方法进行了分析,用硬度法测定了齿轮接触面的渗碳层深度。结果表明:差动齿轮先发生早期疲劳断裂,其原因是齿根处存在尺寸较大的氧化铝夹杂物,导致应力集中形成了裂纹源,再加上齿根部位渗碳时未形成有效硬化层,导致齿根处疲劳强度大大降低,致使裂纹扩展而断裂;随后输入齿轮发生过载断裂。  相似文献   

6.
飞机电源系统的恒速传动装置齿轮在装机使用124 h后发生断裂失效;用体视显微镜、SEM、EDS等方法进行了分析,用硬度法测定了齿轮接触面的渗碳层深度。结果表明:差动齿轮先发生早期疲劳断裂,其原因是齿根处存在尺寸较大的氧化铝夹杂物,导致应力集中形成了裂纹源,再加上齿根部位渗碳时未形成有效硬化层,导致齿根处疲劳强度大大降低,致使裂纹扩展而断裂;随后输入齿轮发生过载断裂。  相似文献   

7.
某往复式甲烷压缩机曲轴在运行过程中发生断裂,通过断口宏观和微观形貌观察、化学成分分析、显微组织观察和力学性能测试等方法,研究了曲轴断裂的原因。结果表明:曲轴发生了扭转疲劳断裂;在交变扭转应力的作用下,曲轴主轴颈不规则且粗糙的过渡圆角和油孔附近粗糙的机械加工痕迹处产生应力集中,导致微裂纹萌生;组织中严重的带状回火屈氏体、大小不均匀的晶粒以及非金属夹杂物导致曲轴的力学性能变差,加速了疲劳裂纹的扩展;建议严格控制曲轴的热处理和制造工艺,优化曲轴结构设计,防止类似事故的再次发生。  相似文献   

8.
通过疲劳试验机对带有齿根裂纹故障的变位直齿轮进行疲劳试验,得到齿根裂纹扩展规律:齿根裂纹相对于齿根方向更易于沿着齿宽方向扩展,扩展速率呈现先慢后快的趋势。采用FRANC3D仿真模拟软件,对设置了相同初始裂纹的变位直齿轮齿根裂纹进行了自动扩展分析研究,确定了裂纹扩展方向及路径。通过对比,模拟结果与试验结果是相吻合的,表明构造的仿真模型得到了疲劳试验的验证,证明了结论的可靠性。通过对齿根裂纹扩展路径及方向的研究,可以为齿轮的设计和制造提供可靠依据。在此基础上,探讨了裂纹扩展寿命的相关问题。  相似文献   

9.
王虹  董智 《机械传动》2008,32(1):104-105
内燃机车牵引主动齿轮在线运行中发生早期断裂.失效分析结果表明,牵引主动齿轮在运行中存在偏载造成局部过载、齿根存在较大装配残余拉应力,以及齿根表面存在过深的内氧化层,共同造成牵引主动齿轮疲劳折断.  相似文献   

10.
某氢气往复式压缩机在正常工作一段时间后,其连接螺栓发生断裂.通过断口宏观与微观形貌观察、化学成分分析、显微组织观察、力学性能测试等方法,对该连接螺栓的断裂原因进行分析.结果表明:该连接螺栓的断裂性质为低应力高周疲劳断裂.在交变载荷作用下,微裂纹在螺栓螺纹根部高应力集中区域萌生;螺栓热处理不当导致形成回火索氏体、上贝氏体...  相似文献   

11.
通过对压缩机断裂的活塞杆进行了宏观形貌分析、微观组织分析、扫描电镜分析,认为活塞杆断裂的主要原因是在制造过程中存在的原始裂纹,引起了活塞杆疲劳断裂失效。  相似文献   

12.
通过对已断裂的迷宫压缩机组合活塞裙的服役情况调查和宏观裂纹观察分析,发现活塞裙与活塞盖发生了相对周向和轴向运动,形成了多源裂纹;通过扫描电镜进行裂纹断口微观分析,同时进行了化学成分分析、金相分析和机械性能分析,能够判断该活塞裙属于多源疲劳断裂,是交变的扭转力及轴向冲击力的共同作用导致,因运行条件突变或使用不当等原因造成活塞套内壁局部区域偏心磨损且产生磨削裂纹,为疲劳失效的萌生提供了必要条件。  相似文献   

13.
减速齿轮在运行过程中齿部发生断裂,通过宏观形貌分析、化学成分分析和金相检验等手段分析了产生断裂的原因。结果表明:齿根处的加工刀痕,以及材料内部大量的非金属夹杂、残留奥氏体和严重的组织偏析大大降低了齿轮的疲劳强度,增大了齿根部应力集中程度,以至在正常载荷条件下发生了断裂。  相似文献   

14.
齿轮在工作中承受交变载荷的作用,会在齿根产生疲劳裂纹等故障,裂纹发生扩展不仅会影响传动精度,甚至可能造成重大的安全事故与经济损失,因此,亟需开展对齿根裂纹扩展演化规律的研究.为此,利用复变函数法构造Westergaard应力函数,分析了裂纹尖端复杂的应力场问题,并依据最大周向拉应力强度因子理论确定裂纹扩展临界条件;结合裂纹扩展过程中裂纹尖端不连续和奇异性问题的实际复杂情况,对扩展有限元法进行修正,建立了齿根裂纹扩展的有限元模型.研究计算裂纹成核点位置和齿轮基体结构中腹板外径、腹板孔与成核处对应位置关系的裂纹扩展路径,得到了不同影响因素的裂纹扩展规律并验证了修正有限元模型的准确性和有效性.研究结果进一步丰富了齿根疲劳裂纹扩展演化机理的研究.  相似文献   

15.
通过宏观检查、显微组织观察、化学成分分析、力学性能试验和断口分析等方法,对天然气压缩机连杆的断裂原因进行分析.结果表明:压缩机连杆的失效形式为疲劳断裂;断裂的主要内因是锻造后热处理工艺不当,导致材料的屈服强度和抗拉强度降低;外因是连杆在工作过程中承受循环应力作用,由于材料强度降低,就会在应力集中部位--螺孔、螺纹底径处萌生显微裂纹,并随着裂纹的扩展而发生疲劳断裂.  相似文献   

16.
试车起动过程中起动电机发出异响,为了明确异响原因对其进行拆检,发现起动电机驱动齿轮的三个齿从齿根部断裂,其它齿的齿根部位出现不同长短的纵向裂纹。通过对故障驱动齿轮进行一系列的检测分析,结果表明:起动电机驱动齿轮断裂是由于紧固螺母拧紧未锁紧导致起动电机驱动齿轮松动,从而使驱动齿轮与飞轮齿圈啮合不稳,产生的冲击载荷过大,使得齿轮受到严重的冲击,啮合弯矩的作用下,在承受弯曲应力最大的危险截面齿根处产生了裂纹源,以至于在齿轮各个齿根部产生不同长短的裂纹,经过多次严重冲击后最终导致齿轮从齿根处过载断裂。  相似文献   

17.
基于扩展有限元方法和线弹性断裂力学理论,使用Fortran语言开发二维裂纹扩展计算程序,并对程序计算准确性进行验证。在此基础上,仿真计算离心力、初始裂纹参数和轮缘厚度系数(Backup ratio)对齿轮齿根二维裂纹扩展的影响,计算结果表明,齿根初始裂纹位置对齿根裂纹扩展的路径影响很大,初始裂纹位置越靠近齿槽中心位置,越容易发生齿轮轮缘断裂(裂纹沿径向扩展至断裂);齿轮轮缘厚度对齿根裂纹影响很大,轮缘厚度系数越小,越容易发生轮缘断裂,同时发生轮缘断裂的裂纹初始位置范围越大;离心力对齿轮齿根裂纹扩展影响很大,离心力越大,越容易发生轮缘断裂,同时发生轮缘断裂的裂纹初始位置范围越大;该研究成果对提高齿轮在高速工况下的可靠性和超安全性具有一定的工程应用价值。  相似文献   

18.
齿根疲劳裂纹是齿轮传动系统服役过程中最常见的失效形式之一,威胁着齿轮传动系统甚至装备的运行安全,开展齿轮传动系统齿部故障诊断具有重要意义,而其核心是齿根裂纹故障的动态作用机制及振动特征。然而,传统啮合刚度计算模型尚未考虑齿根裂纹对齿间耦合作用的影响。针对该问题,分析了齿轮轮体结构变形引起的齿间耦合作用机制,建立了轮体刚度计算的有限元模型,研究了作用力、轮毂孔半径及齿根裂纹深度等参数对轮体刚度,特别是齿间耦合刚度的影响规律。结果表明,齿根裂纹对轮体变形引起的轮体刚度与齿间耦合刚度具有显著的影响,在齿根裂纹时变啮合刚度激励计算中应予以考虑,从而提高齿根裂纹刚度激励计算模型的准确性。  相似文献   

19.
某螺纹连接副在使用过程中发生断裂失效,通过对故障件化学成分、断口、显微组织、硬度等进行分析检测,结果表明,螺栓断裂形式为疲劳断裂,裂纹源位于表面.形成裂纹根本原因为产品表面氧化处理时,腐蚀过度,使螺纹表面形成点腐蚀,机车运行时,在交变载荷的作用下,最终疲劳断裂.  相似文献   

20.
齿轮是机械传动中非常重要的零部件之一.随着我国直升机传动系统的发展,对齿轮传动的可靠性提出了更高的要求.齿轮在传动过程中经常发生齿根疲劳折断现象,严重影响了齿轮的传动.因此,从线弹性断裂力学角度出发,提出了基于Abaqus的计算齿轮断裂过程中断裂参数的方法,并分步模拟了裂纹的扩展趋势,同时比较在全齿高不变的情况下,齿轮上不同的轮缘尺寸对裂纹扩展路径以及裂纹扩展速率的影响,为齿轮传动的安全性和可靠性设计打下基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号