首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以医用介入导管接头为研究对象,基于塑料成型理论在Moldflow软件中进行导管接头模流分析,通过正交实验极差分析,确定了注塑工艺参数对导管接头缩痕指数的影响趋势,得到最佳工艺参数组合。针对实际生产中出现的缩痕缺陷,建立导管接头缩痕指数的BP神经网络参数模型,并用遗传算法进行优化,同时对结果进行仿真模拟,得到缩痕指数为0.0752%,此时的最佳注塑工艺参数为熔体温度238℃、模具温度71℃、注塑压力68 MPa、注塑时间0.61 s、保压压力27 MPa、保压时间24 s,其结果比极差分析法的优化结果(0.088%)减少了14.5%。将遗传算法优化BP神经网络后的注塑工艺参数组合应用于导管接头加工试生产,得到产品外观无明显熔接痕,表面质量良好,满足企业设计要求。  相似文献   

2.
以空气滤清器盖的体积收缩率为评价指标,采用正交试验法和响应面法对影响装配尺寸的关键因素:熔体温度、模具温度、流动速率、保压时间和保压压力进行注塑工艺的优化。结果表明,正交试验法所得最优注塑工艺为:熔体温度210℃、模具温度50℃、流动速率80 cm3/s、保压时间12 s和保压压力100 MPa,此时塑件的体积收缩率为5.988%;响应面法所得最优注塑工艺为:熔体温度214.91℃、模具温度59.46℃、流动速率80 cm3/s、保压时间12 s和保压压力109.94 MPa,此时塑件的体积收缩率为5.520%;响应面法最优工艺条件下得到的体积收缩率低于正交试验法,并且该方法所得的最优工艺能够生产出满足装配尺寸精度要求的零件。  相似文献   

3.
以高铁内风挡为研究对象,利用Moldflow软件对产品的注射成型过程进行有限元模拟。将内风挡的体积收缩率和缩痕指数作为研究目标,采用正交试验法进行数据处理,得到注射工艺参数对内风挡体积收缩率和缩痕指数的影响程度,按照由大到小的顺序排列为模具温度>熔体温度>注射时间>保压时间>保压压力,并且,由响应回归方程得到最佳注射工艺参数。优化结果表明,在模具温度185℃、熔体温度65℃、注射时间115.5 s、保压时间8.49 s、保压压力70 MPa时,体积收缩率和缩痕指数达到最小,分别为7.878%和9.015%,与优化前相比,分别降低了12.5%、10.8%,优化后的工艺参数能够显著降低制品的体积收缩率和缩痕指数,提高内风挡的成型质量。  相似文献   

4.
《塑料科技》2017,(7):81-86
以某一电工仪表外壳为研究对象,模具温度、熔体温度、充填时间和保压压力4个注塑工艺参数为优化目标,制品残余应力和体积收缩率为试验目标函数,采用响应面法(RSM)进行试验设计。所得最优工艺参数优化组合为:模具温度80℃、熔体温度285℃、充填时间1.8 s、保压压力89.18 MPa。经Moldflow模拟,得到最大残余应力与最大体积收缩率分别为54.83 MPa和3.395 4%,这表明响应面模型对工艺参数具有很好的优化效果。以此工艺参数组合为基础,进一步对保压曲线进行优化,得到了近乎最小的残余应力和体积收缩率,从而保证了产品质量,提高了生产效率。  相似文献   

5.
针对某异型出风罩注塑成型工艺,以聚碳酸酯/丙烯腈-丁二烯-苯乙烯共聚物(PC/ABS)工程塑料合金为填料,运用Moldflow软件对其注塑过程进行模流分析,通过田口实验设计研究了熔体温度、保压时间、保压压力、注射时间和模具温度对塑件收缩率和翘曲变形量的影响,得到它们对塑件收缩率的影响次序为:保压时间>熔体温度>保压压力>注射时间>模具温度,对翘曲变形量的影响次序为:保压压力>注射时间>熔体温度>保压时间>模具温度。基于灰色关联分析,获得了最优组合工艺参数,即:熔体温度280℃、模具温度为65℃、注塑时间2.1 s、保压时间11 s、保压压力21 MPa。优化后的仿真结果表明,塑件的体积收缩率为6.523%、翘曲变形量为0.80 mm,比灰色关联次序中位组合的样本数据分别降低6.9%和15.8%,并获得最大注射压力为20.34 MPa、最大锁模力为3.25×10^5 N,为后期模具的设计和注塑参数设定提供了有力的参考,缩短了模具开发周期。  相似文献   

6.
以护目镜为研究对象,基于Moldex3D模流软件进行分析,选用对实验影响最大且可调节性强的7个参数——模具温度、熔体温度、注射速度、注射压力、V/P切换点、保压压力、冷却时间,设计7因素3水平正交实验表。预测护目镜的保压流动残余应力、体积收缩率、热应力、总和条纹级数,从而对工艺参数进行优化。运用极差分析和灰关联度计算,获得的最佳工艺参数为模具温度80℃,熔体温度300℃,注射速度为80 mm/s,注射压力180 MPa,V/P切换点为熔体注射量的97%,保压压力为注射压力的90%,保压时间为8 s,与优化前相比,护目镜的优化后产品的综合质量品质提升了15.4%。  相似文献   

7.
《塑料》2019,(5)
以膨胀箱上盖为研究对象,运用Moldflow软件进行注塑模拟,存在充填不完全、翘曲变形和体积收缩率偏大等缺陷。以模具温度、熔体温度、保压压力、注塑压力为影响因素,确定了4因素3水平的正交试验方案,基于Moldflow模拟,分析了工艺参数对翘曲变形和体积收缩率的影响。结果表明,在研究范围内,工艺参数组合对翘曲变形和体积收缩率的影响能力分别为"保压压力熔体温度模具温度注塑压力"和"熔体温度模具温度保压压力注塑压力",最优的工艺参数分别为"模具温度为40℃,熔体温度为200℃,保压压力为60 MPa,注塑压力为120MPa"和"模具温度为40℃,熔体温度为200℃,保压压力为50 MPa,注塑压力为80 MPa"。  相似文献   

8.
利用Moldflow软件对某厚壁塑料制件的注射成型过程进行分析,选取反映制品收缩与翘曲的多个评价指标,结合正交实验法,优化充填时间、熔体温度、保压时间、保压压力、冷却时间等工艺参数,通过均值分析与极差分析研究各因素对各评价指标的影响,并通过综合评分法得到一组最佳的工艺参数。结果表明,增加保压时间与保压压力能减小产品的收缩和翘曲,且得出的最佳工艺组合为注射时间为2.5 s,熔体温度为280 ℃,保压时间为130 s,保压压力为110 MPa,冷却时间为40 s,该工艺下产品的质量疏松度、体积收缩率、平面误差、翘曲分别降低了6.66 %、7.90 %、12.5 %、20.83 %,产品整体成型品质得到有效提高。  相似文献   

9.
针对无线采集器收缩不均的缺陷,通过Moldflow对制品进行初始分析。以冷却时间、熔体温度、注射速率、保压时间和保压压力为试验变量,无线采集器的体积收缩率为质量评价指标,设计正交试验。结果表明:通过极差分析得到最优工艺参数为冷却时间20 s、熔体温度320℃、注射速率80 cm3/s、保压时间12 s以及保压压力45 MPa。与优化前相比,制品翘曲变形明显降低,降低幅度达到35.47%。  相似文献   

10.
基于Moldflow软件,采用正交试验和响应曲面法,对高铁橡胶外风挡注射成型的模拟方案优化设计,并对注射成型工艺参数进行研究。结果表明:模具温度是影响橡胶外风挡顶出时的体积收缩率和缩痕指数的最显著工艺因素,其次分别是熔体(胶料)温度、保压时间、保压压力、注射时间;优化的注射工艺参数为:模具温度185℃,熔体温度65℃,注射时间160 s,保压时间14 s,保压压力110 MPa。在此工艺参数下的橡胶外风挡顶出时的体积收缩率最大值为4.165%,缩痕指数最大值为5.103%。  相似文献   

11.
陈洁琼 《塑料工业》2022,(12):87-93+15
针对新型冠状病毒肺炎(COVID-19)核酸检测卡收缩问题,对制件运用模流软件进行工艺优化,探究注塑成型工艺优化方案。通过对比模具温度、熔体温度、注射时间、保压时间和保压压力,将质量评价指标设置为核酸检测卡的体积收缩率,采用Taguchi正交试验方法选出训练样本,应用多层前馈网络模型(BP)神经网络技术,建立预测模型,并采用改进粒子群算法(PSO)对模型进行优化,以体积收缩率为目标函数,对工艺数据样本进行训练,并进行预测,得到最优体积收缩率为3.864%,其对应的参数为模具温度81℃,熔体温度200℃,注射时间0.6 s,保压时间12 s,保压压力45 MPa,并使用计算机辅助工程(CAE)软件对预测出的体积收缩率的工艺参数进行模拟验证,得到体积收缩率为3.786%,误差仅为2.06%,与优化前(8.954%)相比降低57.72%。并通过试模得到试件外观质量较好,无明显翘曲变形缺陷,经检测试件最大翘曲变形量小于0.15 mm,满足生产要求。表明此改进PSO-BP模型预测塑件的体积收缩率准确精度较高,有一定的生产应用价值。  相似文献   

12.
以插线板上盖为例,提出了一种注塑质量与能耗的工艺参数优化分析方式。选择6个工艺参数为因素变量,产品翘曲总量与注射阶段能耗值为优化指标,利用变异系数法确定二者权重,结合综合评分法将指标拟合为综合评分值。首先建立Taguchi试验,经过极差分析得出初始优化参数,随后基于Matlab平台建立BP神经网络模型,将其作为适应度函数,通过遗传算法(GA)进行全局寻优,得到最优工艺参数为模具温度50℃、熔体温度230℃、注射时间1.465 s、保压时间10.37 s、保压压力100 MPa、冷却时间15 s,经Moldflow分析,所得指标均优于Taguchi试验提供的优化结果,实现了注塑质量与能耗值的同时优化,证明了基于GA-BP神经网络的注塑工艺参数优化方法的有效性。  相似文献   

13.
以某杯形塑件为例,设计了随形冷却水道模具。在Moldflow软件模拟注塑成型过程的基础上,利用正交试验法分析了熔体温度、注射压力、保压压力和保压时间等工艺参数对制品成型周期的影响。通过遗传算法和Moldflow获得的最佳注塑工艺参数为熔体温度180℃,注射压力22 MPa,保压压力16 MPa,保压时间8 s,成型周期14. 11 s。在最佳工艺参数组合下进行注塑成型试验,平均注塑成型周期为14. 19 s。结果表明,模拟结果和试验结果之间相接近。将数值模拟和遗传算法相结合,可以有效提高运算速度和优化效率。  相似文献   

14.
针对塑件在成型过程中的多指标优化问题,利用注塑仿真软件对塑件进行仿真,预测其翘曲、体积收缩以及缩痕效果,并结合正交试验、极差分析和综合评分方法对注塑工艺参数进行优化。结果证明,当模具温度为50℃,熔体温度为200℃,保压压力为注射压力的120%,冷却时间为15 s,保压时间为20 s,注射时间为3 s时,塑件成型综合质量较好,注射时间对综合评分影响最大。  相似文献   

15.
散热器外壳是电子产品散热器的主要零件之一,由于壁薄,在注塑成型中经常出现壁厚不均、翘曲变形和熔接痕等缺陷。针对该问题,以熔体温度、模具温度、冷却时间、注射压力、注射时间、保压压力和保压时间7个工艺参数为输入量,注塑件的翘曲量作为输出量,建立RBF神经网络模型;利用均匀试验所得的数据作为样本对神经网络进行训练和测试,得到注塑工艺参数与塑件翘曲变形量之间的非线性映射关系。结合遗传算法对工艺参数进行优化,获得最佳的工艺参数为:熔体温度234. 4℃、模具温度31. 5℃、冷却时间23. 8 s、注射压力128. 3 MPa、注射时间4. 7 s、保压压力93. 0 MPa、保压时间14. 1 s,获得预测的最小翘曲变形值为0. 331 875 mm,并使用优化后的工艺参数进行试验。试验结果表明,优化后产品的最大翘曲变形量降低至0. 318 9 mm,与优化前均匀试验所得的0. 378 1 mm相比,得到了明显的改善,降低了15. 7%。  相似文献   

16.
采用4因素4水平的正交实验法,考察了熔体温度(A)、注射压力(B)、保压压力(C)、注射时间(D)、对建筑用碳纤维复合材料试件翘曲总变形、体积收缩率和缩痕的影响,优化了建筑用碳纤维/聚碳酸酯基复合材料的成型工艺。结果表明,各因素对翘曲总变形和缩痕影响从高至低顺序为:ACBD,对体积收缩率影响从高至低顺序为ABCD,采用综合平衡法优化碳纤维/聚碳酸酯基复合材料的最佳注塑成型工艺参数组合为A4B1C1D2,即熔体温度为305℃、注射压力为155MPa、保压压力为85MPa、注射时间为3s。  相似文献   

17.
张松泓  张继方 《塑料》2023,(1):156-163
为解决齿轮注塑成型过程中的缺陷问题,基于模流软件,以熔料温度、注射时间、冷却时间及相对保压压力作为试验因素,利用正交试验选取27组试验进行数据处理,采用综合加权评分法对残余应力和体积收缩率进行综合优化。结果表明,齿轮注塑过程流动均匀顺畅,熔接强度较好,满足齿轮的基本生产要求;以齿根残余应力和齿顶体积收缩率作为多目标的最优参数组合为熔料温度180℃、注射时间1.8 s、冷却时间16 s、相对保压压力90%,最优参数组合的模拟结果表明,齿顶顶出时体积收缩率为0.735%,齿根位置残余应力为65.39 MPa,与优化前(74.64 MPa)相比,减小了12.39%,为齿轮低成本、高质量生产提供了新的加工方法。  相似文献   

18.
刘军辉  梁国栋 《塑料》2020,49(3):62-65
为解决聚合物注塑产品的收缩翘曲问题,文章提出了一种以数值模拟为手段,对所有网格节点体积收缩率值进行最小化的平衡的优化方法,从而改善产品的翘曲程度。首先,建立注射模具有限元模型,以节点体积收缩率标准差为目标,将通过正交模拟试验得到的节点收缩数据,导入Matlab进行网格节点的体积收缩率标准差运算,最终,采取极差分析,得到注射工艺参数的重要程度顺序为:保压压力、熔体温度、保压时间、模具温度和冷却时间,并得到最佳的注射工艺参数组合。优化注射实验结果表明,节点体积收缩率标准差越小,产品收缩时发生的翘曲程度越小,文章中优化后产品最大变形量仅为0. 073 8 mm,翘曲量约减小了8倍,验证了该优化方法的有效性。  相似文献   

19.
以某一高压固定板为研究对象,把五大因素(模具温度、熔体温度、填充时间、保压压力、保压时间)作为优化目标,制品的体积收缩率和翘曲变形作为研究目标,设计正交试验并通过Moldflow软件模拟仿真,然后对试验数据结果进行极差和方差分析,最终得到的最佳工艺参数组合为:模具温度70℃,熔体温度280℃,填充时间1 s,保压压力为注射压力的90%,保压时间12 s。再次进行Moldflow软件模拟,得到制品的体积收缩率和最大翘曲变形分别为4.824%和0.632 mm,有效地提高了制品的成型质量,对于实际应用生产具有理论指导意义。  相似文献   

20.
采用Moldflow软件对医用SEBS制品的成型过程进行仿真实验,以体积收缩率为评价指标,研究了工艺参数的改变对制品收缩率的影响。并通过圆柱形试样注塑成型实验,验证模拟了实验中工艺参数对收缩变形规律的影响。结果表明,熔体温度和保压压力的变化对塑件体积收缩率的影响较为显著;通过圆柱形试样的模拟及实验验证,得出了医用瓶塞注塑成型模拟实验的结果具有一定的参考价值,并确定了医用瓶塞的最佳工艺方案组合:熔体温度180℃,注射压力25 Mpa,保压压力20 Mpa,模具温度20℃,保压时间16 s。最小收缩率为1.76%,小于其他工艺条件下的收缩率,说明注塑工艺对SEBS制品的收缩变形具有较大影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号