首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚乳酸作为基体材料,通过研磨共混法制备了多壁碳纳米管(MWCNT)/聚乳酸(PLA)复合粒料,应用3D打印技术打印了PLA/MWCNT复合材料样条。通过对复合材料导电性能测试,结果表明随着MWCNT掺杂量的增加,复合材料的电导率数值呈指数型增长,当MWCNT含量达6%时,电导率为10~(-2) S/cm。力学性能测试得到在MWCNT含量为6%时,样条的拉伸强度达63.7 MPa,比纯的PLA材料提升37.6%;弯曲强度为126.7 MPa,提高了16.9%。扫描电子显微镜(SEM)观察发现MWCNT在PLA基体中较为分散,PLA/MWCNT复合样条断面呈现多孔蜂窝状。样品热分解温度高达390.2℃,耐热效果明显提升。  相似文献   

2.
王永祯  李智辉  蔡晓岚 《炭素》2012,(2):32-37,12
以多壁碳纳米管(MWCNTs)为载体,通过化学悬浮聚合法制备碳纳米管/铁-钴/聚苯胺(MWCNT/Fe-Co/PANI)三重复合材料,并用作染料敏化太阳能电池对电极.通过场发射扫描电子显微镜(FESEM)和X-射线衍射法(XRD)等对所制MWCNT/Fe -Co/PANI复合材料进行表征,结果表明:MWCNT/Fe-Co/PANI复合材料呈微观多乳网状结构,Fe-Co纳米合金颗粒负载于MWCNTs上,PANI对MWCNT/Fe-Co又进行了管外键联及包覆.通过三电极系统测试了MWCNT/Fe-Co/PANI复合电极在I-3/I-电解质中的循环伏安曲线,结果显示:复合电极具有很好的电催化效果.MWCNTs与PANI形成的规则结构可促进对电解质的吸附,而Fe-Co纳米合金则增强了电极的催化效应.  相似文献   

3.
以三元乙丙橡胶(EPDM)为基材,多壁碳纳米管(MWCNT)及有机蒙脱土为添加剂,制备了EPDM/MWCNT纳米复合材料;使用热重分析仪和锥形量热仪等测试了纳米复合材料热性能、阻燃性能及力学性能。结果表明,添加适量MWCNT可使纳米复合材料热稳定性、阻燃性能及力学性能有所提升;当MWCNT用量超过一定程度时,纳米复合材料热稳定性和拉伸强度降低,峰值热释放速率(HRR)以及总生烟量有不同程度上升,这与MWCNT在EPDM基体中的分散有关。  相似文献   

4.
肖潇 《化工中间体》2023,(22):176-178
高岭土通过硅烷偶联剂(KH-550)改性,然后加入相容剂,与聚丙烯熔融共混制备出聚丙烯/高岭土复合材料。研究表明:改性后高岭土红外谱图上出现了烷基的特征吸收峰,表明偶联剂分子对高岭土表面进行了有机化改性。随着高岭土、相容剂含量增加,复合材料的力学性能、热变形温度先增加再减小。当对高岭土改性并加入相容剂后,高岭土能更好地起到异相成核作用,在一定程度上促进聚丙烯结晶,并且有利于微晶在(040)晶面方向的生长。  相似文献   

5.
本研究采用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)对石墨烯(GE)进行改采用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)对石墨烯(GE)进行改性,将得到的改性石墨烯(KH-GE)与天然橡胶(NR)进行混炼制备改性石墨烯/天然橡胶(KH-GE/NR)复合材料。采用傅里叶红外光谱仪、拉曼光谱仪、X射线衍射仪和场发射扫描电镜对改性前后石墨烯结构进行表征,同时研究了KH-GE/NR复合材料的硫化性能、力学性能和导电性能。结果表明:硅烷偶联剂KH-570对GE改性后,增大了GE的层间距,改善了GE在NR基体中的分散;随着KH-GE用量增加,KH-GE/NR复合材料力学性能提高,当KH-GE质量分数为1.0 %时,KH-GE/NR复合材料的拉伸强度和断裂伸长率分别为17.57Mpa和645.48%,比未添加KH-GE的复合材料分别提高122%和21%,同时复合材料的体积电阻率最终下降约三个数量级。  相似文献   

6.
以硅烷偶联剂KH570为改性剂对长石粉体进行了湿法表面改性,通过熔融共混法制备了聚乳酸(PLA)/改性长石复合材料,并对其性能及微观结构进行了测试和表征。界面接触角测试表明,改性后长石粒子的界面接触角明显增大,表面具有亲油性,这与FTIR分析结果相吻合。力学性能测试表明,与PLA基体相比,当改性长石用量为0.5%时,PLA/改性长石复合材料的拉伸断裂强度提高了17.82%,冲击强度提高了23.25%。TGA分析结果显示,PLA/改性长石复合材料的热分解温度比PLA基体提高了12.33℃,表明改性长石的加入提高了复合材料的热稳定性。XRD分析结果表明,改性长石的加入起到了部分异相成核剂的作用,从而使结晶成核速度加快。DSC分析结果表明,改性长石可以消除PLA复合材料的冷结晶,有助于提高PLA复合材料的结晶度,这与XRD分析相吻合。另外降解实验表明,改性长石的加入加快了PLA复合材料的降解。  相似文献   

7.
《塑料科技》2016,(10):39-43
采用六甲基二硅氮烷(HMDS)对硅溶胶进行接枝改性,并通过双螺杆挤出机将改性硅溶胶与聚乙烯(PE)熔融共混,制备了PE/改性硅溶胶复合材料。利用透射电镜(TEM)、万能试验机、差示扫描量热仪(DSC)分别考察了改性硅溶胶的接枝率及其添加量对复合材料分散性、力学性能和结晶性能的影响。结果表明:提高硅溶胶接枝率,有利于Si O_2粒子在基体中的分散,从而改善复合材料的力学性能;而过高的改性硅溶胶填充量会导致基体中Si O_2粒子严重团聚,不利于复合材料力学性能的提高。  相似文献   

8.
采用熔融共混法制备了高密度聚乙烯(PE-HD)/石墨烯纳米片(GNP)/多壁碳纳米管(MWCNT)纳米复合材料。研究了GNP/MWCNT比例对PE-HD/GNP/MWCNT纳米复合材料流变特性、电学及力学性能的影响。结果表明,3种PE-HD/GNP/MWCNT纳米复合材料的储能模量曲线均在低频区出现"第二平台"。MWCNT含量增大有利于提高纳米复合材料的导电性,GNP/MWCNT比例为2/8时,复合材料呈现出更低的体积电阻率。当GNP+MWCNT含量为0.5份、GNP/MWCNT比例分别为7/3,5/5,2/8时,PE-HD/GNP/MWCNT纳米复合材料悬臂梁缺口冲击强度均呈现最大值,分别为15.05,9.98,10.42 kJ/m2,是纯PE-HD的2.32,1.54,1.60倍。纳米复合材料冲击韧性提高的根本原因在于GNP和MWCNT协同诱发PE-HD基体产生明显的屈服。GNP/MWCNT填料的加入可使3种纳米复合材料的拉伸强度和弯曲强度有所提高。  相似文献   

9.
《应用化工》2022,(4):915-918
采用熔融共混法制备改性坡缕石/聚苯乙烯复合阻燃材料(Ps-hat)。结果表明,改性坡缕石的加入可有效改善聚苯乙烯的热稳定性、阻燃性能和力学性能。添加10%的改性坡缕石/聚苯乙烯复合阻燃材料(Ps-hat(10))的热释放速率为651W/g,总热释放量为42 060 J/g,较纯聚苯乙烯(PS)的热释放速率(763W/g)和总热释放量(48 320 J/g)均有明显下降;Ps-hat(10)在800℃下残炭剩余量16%,高于纯PS残碳剩余量;Ps-hat(10)比纯PS应力提高13.8%,具有较好的力学性能。  相似文献   

10.
采用液态三元乙丙橡胶(LEPDM)对高岭土进行表面改性,然后与聚丙烯(PP)熔融共混,制得了PP/改性高岭土复合材料,采用氧指数测定仪、熔体流动速率仪(MFR)和扫描电子显微镜(SEM)等对比分析了高岭土和改性高岭土对PP力学性能、加工性能、阻燃性能和微观形貌的影响。结果表明:高岭土及改性高岭土均会改善PP的力学性能、加工性能和阻燃性能。当填料含量相同时,PP/改性高岭土复合材料的拉伸强度、缺口冲击强度和加工性能均优于PP/高岭土复合材料,PP/高岭土复合材料的阻燃性能和弹性模量均优于PP/改性高岭土复合材料。当改性高岭土质量分数为10%时,PP/改性高岭土复合材料的缺口冲击强度和MFR均达到最大,分别为12.63 kJ/m2和1.75 g/10 min。  相似文献   

11.
用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)对石墨烯(GE)进行改性,将得到的改性石墨烯(KHGE)与天然橡胶(NR)进行混炼制备出改性石墨烯/天然橡胶(KH-GE/NR)复合材料。采用傅里叶变换红外光谱仪、拉曼光谱仪、X射线衍射仪和扫描电镜对改性前后石墨烯的结构进行了表征,考察了KH-GE/NR复合材料的硫化性能、力学性能和导电性能。结果表明:KH-570对GE改性后,增大了GE的层间距,使GE在NR基体中的分散得到了改善;随着KH-GE用量的增加,KH-GE/NR复合材料力学性能提高,当KH-GE质量比(即KH-GE质量占NR质量的百分数,下同]为1.0%时,KH-GE/NR复合材料的拉伸强度和断裂伸长率分别为17.57 MPa和645.48%,比未添加KH-GE的复合材料分别提高了122%和21%,当KH-GE质量比为2.5%时,KH-GE/NR复合材料的体积电阻率最终下降约3个数量级。  相似文献   

12.
采用硅烷偶联剂KH-560和丙烯酰胺对SiC进行表面改性,将其添加到环氧树脂中制备环氧树脂/改性SiC复合材料.采用傅里叶变换红外光谱仪、X射线衍射仪以及接触角测试仪探究改性SiC的性能,并对复合材料的性能进行测试.结果表明:SiC表面带有憎水基团,与环氧树脂相容性提高;SiC用量为环氧树脂质量的20%时,拉伸强度和弯...  相似文献   

13.
以二元乙丙橡胶(EPR)为增韧材料、纤维素(α-C)为增强材料、EPR接枝乙烯醇共聚物(EPR-g-VA)为增容剂,采用熔融共混方法制备了聚丙烯(PP)/EPR/改性纤维素(M-C)复合材料.通过红外光谱、X射线衍射分析验证了M-C的结构,通过扫描电子显微镜、偏光显微镜、热重分析仪、塑料材料动态性能试验机、电子万能试验...  相似文献   

14.
采用双辊开炼机和平板硫化机高压制样的方法制备了煤矸石粉/SBS复合材料体系,运用SEM、DSC、TG对复合材料的断面形貌和热性能进行了分析,同时对复合材料的力学性能进行考察。结果表明,表面改性的煤矸石粉在SBS体系中与弹性体充分结合,断面产生了大量的网状结构,进一步提高了材料的拉伸强度、断裂伸长率和热稳定性,硬度增加幅度较小。  相似文献   

15.
以熔融共混法制备了聚对苯二甲酸-己二酸丁二醇酯/聚乳酸/滑石粉(PBAT/PLA/Talc)复合材料,研究了Talc含量对复合材料力学性能、微观结构、热力学性能及流变性能的影响。结果表明:随着Talc含量的增加,PBAT/PLA/Talc的拉伸强度先下降后上升,标称应变由22.91%升至241.54%,再降至35.11%;弯曲模量从1.57 GPa逐渐提升至2.61 GPa。随着Talc含量的增大,PBAT/PLA/Talc复合材料的结晶温度升高,熔融温度有所降低。体系的黏度随Talc含量的增加呈现先下降后上升的趋势,Talc含量为5份时,PBAT/PLA/Talc复合材料的黏度最低。因此,Talc可改善PBAT、PLA的界面相容性,对复合材料熔体流动具有较大影响。  相似文献   

16.
刘盼  崔继文  刘影  王闪  朱风帅  韩晶杰 《橡胶工业》2021,68(3):0191-0195
采用多巴胺对多壁碳纳米管(MWCNTs)进行非共价改性,得到多巴胺改性MWCNTs(简称PCNT)。将PCNT作为填料加入天然胶乳中制备PCNT/天然橡胶(NR)复合材料,并研究其性能。透射电子显微镜(TEM)分析结果表明MWCNTs经过多巴胺改性后在水中的分散效果明显改善。PCNT/NR复合材料的拉伸强度和撕裂强度明显提高,拉伸强度由22.7 MPa升至28.4 MPa,撕裂强度由26 kN·m-1升至40 kN·m-1。多巴胺用量适当的PCNT在NR基体中分散更均匀,填料与橡胶的相互作用较强,能够形成较好的填料网络结构,PCNT/NR复合材料的表面电阻显著降低。  相似文献   

17.
以微晶白云母为原料,以钛酸酯偶联剂NDZ-101为改性剂,对微晶白云母进行改性研究,并将表面改性后的微晶白云母加入聚氯乙烯(PVC)材料中制得微晶白云母/PVC复合材料.测试了改性粉体与石蜡体系的黏度及复合材料的力学性能,并采用扫描电子显微镜测试研究了其微观结构.结果表明,钛酸酯偶联剂NDZ-101能有效改善微晶白云母表面与有机物质的界面结合,并且将经钛酸酯偶联剂NDZ-101改性的微晶白云母加入PVC基体中能提高微晶白云母/PVC复合材料的力学性能,当钛酸酯偶联剂的用量为0.7%、微晶自云母用量为10%时,微晶白云母/PVC复合材料的力学性能最好.  相似文献   

18.
通过水溶性2-巯基-1-甲基咪唑(MMI)有机改性(还原)氧化石墨烯(GO)制备MMI改性GO(MMI-GO),同时将抗坏血酸(VC)还原GO(rGO)作为对比试样,通过胶乳共混法制备GO/天然橡胶(NR)复合材料,研究GO用量对复合材料性能的影响。结果表明:MMI成功地改性了GO;随着GO用量的增大,GO/NR复合材料的硬度、撕裂强度和热导率增大;与rGO/NR复合材料相比,MMI-GO/NR复合材料的交联密度增大,GO在NR基体中的分散性良好,硬度和撕裂强度增大以及导热性能改善。  相似文献   

19.
改性纳米氮化钛/NBR复合材料的制备及性能研究   总被引:1,自引:0,他引:1  
采用甲基丙烯酸甲酯-丙烯酸丁酯-丙烯腈三元共聚物对纳米氮化钛进行表面改性,制备改性纳米氮化钛/NBR复合材料,并对复合材料的性能进行研究.结果表明,改性后纳米氮化钛的粒径减小,分散性改善;随着改性纳米氮化钛用量的增大,改性纳米氮化钛/NBR复合材料的拉伸性能、耐磨性能、耐热空气老化性能和耐油性能先提高后降低;当改性纳米氮化钛用量为0.6~1份时,复合材料的综合性能较好.  相似文献   

20.
通过简单的回流氧化石墨烯(GO)和二乙基甲苯二胺(E-100)成功实现氧化石墨烯的原位功能化还原,制备了导电及表面修饰的氧化石墨烯(GO-E100),其电导率由GO的1. 0×10-7S/m提高到1 S/m。此外,制备的GO-E100有效地增强了以丁腈橡胶(NBR)为基体的柔性复合材料的力学性能和导电性能。当GO-E100在复合材料中的质量分数为4. 2%时,复合材料电导率达到3. 2×10-12S/m,比纯NBR增加了3个数量级,同时拉伸强度提高了18. 6%;当GO-E100在复合材料中的质量分数为6. 8%时,其拉伸强度提高了12%,耐油性稍有改善,复合材料电导率达到5. 6×10-8S/m,比纯的NBR增加了7个数量级,基本满足抗静电要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号