首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以聚四氢呋喃多元醇(PTMG)、聚己内酯多元醇(PCL)、4,4′-二苯基甲烷二异氰酸酯、1,4-丁二醇和三羟基聚醚多元醇等为主要原料制备了4种聚氨酯(PU)弹性体。采用电子万能试验机、动态力学热分析仪、差示扫描量热仪以及扩展流变仪等设备分析了不同相对分子质量的PTMG和PCL对PU弹性体的力学性能、热性能以及流变性能的影响。结果表明,PCL类PU弹性体的拉伸强度、硬度、平台区弹性模量、软段玻璃化转变温度以及反应体系的表观黏度都偏高,而PTMG类PU弹性体的滞后损失偏高;同一种类多元醇的PU弹性体的各项性能也因相对分子质量的不同而有差异。  相似文献   

2.
采用半预聚体法,分别以聚四氢呋喃二醇(PTMG)、聚己内酯二醇(PCL)和聚己二酸新戊二醇酯二醇(PNA)为软段,液化MDI、1,4-丁二醇(BDO)为硬段制备具有不同软段组成的聚氨酯弹性体,研究了软段组成对聚氨酯弹性体性能的影响。结果表明,PCL型和PNA型聚氨酯弹性体力学性能较好,玻璃化转变温度较高,接触角较大,吸水率较低;浸水7 d后,PTMG型聚氨酯弹性体强度保持率较高。  相似文献   

3.
分别以聚己内酯二醇(PCL)、聚碳酸酯二醇(PCDL)、聚己二酸-1,4-丁二醇酯二醇(PBA)以及聚四氢呋喃二醇(PTMG)为软段,4,4'-二苯基甲烷二异氰酸酯(MDI)和1,4-丁二醇(BDO)为硬段,采用预聚体法合成4种基于不同软段的聚氨酯弹性体。通过机械性能测试、热失重分析、动态力学性能测试及不同温度下的力学性能分析,研究低聚物二醇种类对聚氨酯弹性体的力学性能和耐热性能的影响。结果表明,以聚酯多元醇作为软段制得的聚氨酯弹性体的耐热性要优于聚醚型;几种聚酯型聚氨酯弹性体中,PCL型聚氨酯弹性体的热稳定性以及不同温度下的力学性能保持率最高,耐热性最好;动态力学性能分析表明,在高弹态平台区PCL型聚氨酯的损耗因子较小,动态内生热较小,且储能模量下降较缓慢,动态力学性能最好。  相似文献   

4.
分别以聚己内酯二醇(PCL)、聚四亚甲基醚二醇(PTMG)为低聚物二醇原料,以对苯二异氰酸酯(PPDI)、二苯基甲烷二异氰酸酯(MDI)或2,4-甲苯二异氰酸酯(TDI)为异氰酸酯原料,以1,4-丁二醇(BDO)或3,3'-二氯-4,4'-二氨基二苯基甲烷(MOCA)为扩链剂,采用预聚体法合成了结构不同的聚氨酯(PU)弹性体,并对其进行了物理机械性能测试、热重分析(TG)和动态力学分析(DMA)。结果表明,PCL/PPDI/BDO聚氨酯弹性体的力学性能和耐热性能最好; PPDI/BDO/PCL聚氨酯弹性体的储能模量优于TDI/MOCA/PCL弹性体;当硬段结构为PPDI/BDO时,较低温度下,PCL体系的储能模量优于PTMG体系,较高温度下,PTMG体系优于PCL体系。  相似文献   

5.
宋杰  史君  陈颖 《聚酯工业》2008,21(5):10-13
对以对苯二甲酸二甲酯、1,4-丁二醇和四氢呋喃聚醚二元醇为原料,钛酸四丁酯为催化剂制备PBT—PTMG嵌段共聚酯的工艺方法进行了研究。制备了软硬段比不同的PBT—PTMG嵌段共聚酯切片,并对其性能进行了表征。其结果显示,PBT—PTMG嵌段共聚酯的密度和硬度都随PBT含量的增大而增大,吸水率随聚醚含量增大而增大;调节PBT-PTMG嵌段共聚酯的组成可以得到具有不同力学性能的产物,且具有良好韧性。  相似文献   

6.
采用预聚物法,选用二苯基甲烷二异氰酸酯(MDI)体系考察了聚己内酯二醇PCL220N和聚四氢呋喃PTMG1000配比对聚氨酯弹性体性能的影响。结果表明,当PCL220N/PTMG1000配比为80/20时,用其制得的聚氨酯弹性体力学性能较为优异;当PCL220N/PTMG1000配比为70/30时,弹性体损耗模量和损耗因子都最低;储能模量、耐磨性和回弹性都随PTMG1000用量的增大而增大。  相似文献   

7.
聚醚型与聚酯型聚氨酯弹性体的性能研究   总被引:1,自引:0,他引:1  
张敏  夏青  王昊  张宝峰  李猛 《塑料工业》2013,41(2):87-89,114
使用聚乙二醇(PEG)、聚四亚甲基醚二醇(PTMG)、聚己内酯(PCL)和4,4’-二苯基甲烷二异氰酸酯(MDI)合成了聚醚多元醇型和聚酯多元醇型热塑性聚氨酯弹性体(TPU)。研究了各种TPU中异氰酸酯指数(R0)、硬段浓度(Ch)、聚醚和聚酯的种类、摩尔质量及原料用量等对弹性体力学性能的影响;并且使用双酚A型环氧树脂NPEL-127改性了弹性体的耐热性。研究结果表明:TPU的硬度随着R0和Ch的增加而增加;聚醚型TPU中,随着软段中柔性链的增加,TPU的硬度下降而力学性能提高;聚酯型TPU中,随着聚酯和聚酯二元醇摩尔质量的提高,TPU的硬度和力学性能均有提高;聚酯型TPU的力学性能优于聚醚型TPU;环氧树脂改性使得聚醚型TPU耐热性提高。  相似文献   

8.
张芳  刘扬  陈伟  张宁 《广东化工》2013,(15):68-69
通过将聚己内酯与聚四氢呋喃、普通聚酯掺混制备浇注型聚氨酯预聚体,研究了不同混合比例对工艺的影响及弹性体制品的耐高温、耐水解性能。结果表明:PCL与PEA可以以任意比例互溶,按一定比例掺混制备的弹性体具有较好的常温力学性能;PCL与PTMG只能在一定比例范围内互溶;耐高温、耐水解实验结果显示:聚己内酯型预聚体制备的弹性体具有较好的耐高温、耐水解性能。  相似文献   

9.
TODI类浇注型聚氨酯弹性体的耐热性能研究   总被引:2,自引:0,他引:2  
用3,3'-二甲基-4,4'-联苯二异氰酸酯(TODI)与聚四氢呋喃(PTMG)、聚己内酯多元醇(PCL)合成了一系列浇注型聚氨酯弹性体,考察了不同聚合物多元醇、扩链剂以及硬段含量对弹性体耐热性能和力学性能的影响.结果表明:PCL体系的耐热性能和力学性能优于PTMG体系,其拉伸强度在120℃下保有率>90%;用3,3'...  相似文献   

10.
美国Du Pont Engineering Polymers(杜邦工程聚合物)公司可能成为第一个用可再生资源生产工程塑料树脂和热塑性弹性体(TPE)的厂家,产品为聚对苯二甲酸丙二醇酯(PTT)树脂Sorona和热塑性聚酯弹性体Hytrel,均为聚酯类产品。生产Sorona和Hytrel的关键组分是DuPont公司的Bio—PDO(生物-丙二醇),足利用该公司的玉米发酵专利工艺生产的原料,替代石化路线生产的PDO和丁二醇。PTT性能和加工性与PBT类似,但表面外观和光泽更好,玻璃化温度比PBT高15~20℃,适用领域为汽车和电子电器部件。  相似文献   

11.
1,4-丁二醇(BDO)主要用作化学中间体,最大用量的衍生物为四氢呋喃(THF),其次是工程塑料聚对苯二甲酸丁二醇酯(PBT)和γ-丁内酯(GBL)衍生物。THF可用于生产聚四亚甲基醚乙二醇(聚四氢呋喃,PTMEG),主要用于斯潘德克斯弹性纤维(氨纶)、聚氨酯弹性体和共聚酯,其他用途有:溶剂、涂层树脂和医药中间体。在2004年全球丁二醇消费量中,THF占35%,PBT占32%,GBL占14%,  相似文献   

12.
董子辉  李闯  苏威铭  刘锦春 《橡胶工业》2023,70(11):0876-0880
以聚己内酯二醇(PCL2000)和聚四氢呋喃醚二醇(PTMG1000)并用作为软段单体、二苯基甲烷二异氰酸酯为硬段单体,合成混炼型聚氨酯(MPU)。保持硬段含量不变,研究PCL/PTMG并用比(质量比)对MPU性能的影响。结果表明:随着PTMG用量的增大,MPU的玻璃化温度降低;MPU硫化胶的拉伸强度、拉断伸长率和撕裂强度均先增大后减小,DIN磨耗量增大,热氧老化后的拉伸强度和拉断伸长率降幅明显增大;当PCL/PTMG并用比为90/10时,MPU硫化胶的拉断伸长率和撕裂强度最大,分别为518%和66 kN·m-1;仅加入PCL的MPU硫化胶的DIN磨耗量最小, 为0.014 4 cm3。  相似文献   

13.
刘凉冰 《特种橡胶制品》2009,30(4):17-19,23
采用预聚体法以四氢呋喃均聚醚(PTMG)、4,4′-二苯基甲烷二异氰酸酯(MDI)和1,4-丁二醇(BDO)或三羟甲基丙烷(TMP)与BDO混合的扩链剂合成了聚氨酯(PU)弹性体。研究了软段相对分子质量、预聚体NCO基质量分数和扩链剂的用量对聚氨酯弹性体力学性能的影响。实验结果表明:在硬度相同时,PTMG相对分子质量为2000聚氨酯弹性体的撕裂强度、拉断伸长率和冲击弹性高。PU弹性体硬度、撕裂强度和定伸应力随预聚体NCO基相对质量分数增加而增加。用少量三元醇交联的弹性体与完全用二元醇扩链的弹性体相比,定伸应力高,永久变形好。  相似文献   

14.
综述了通过化学方法改性尼龙6的发展概况,简要介绍了用各种弹性体、刚性链段以及共聚单体等,弹性体可采用四氢呋喃聚醚(PTMG)、环氧丙烷聚醚(PPG)、聚乙二醇(PEG)、聚己内酯(PCL)、丁腈橡胶(ATBN)等,刚性链段如聚酰亚胺、N酰化己酰胺末端基芳香族聚酰胺、氯封端聚醚砜等;单体共聚采用己内酯。  相似文献   

15.
王爱莲 《山西化工》2013,33(2):17-21,29
由聚己内酯(PCL)和聚乙二醇(PEG)分别与1,6-亚甲基二异氰酸酯(HDI)合成端异氰酸酯基聚氨酯,再与缩水甘油反应制备环氧改性聚氨酯(EUP);六亚甲基二胺(1,6-己二胺,HMDA)作固化剂,与环氧改性聚氨酯(EUP)反应合成生物降解聚氨酯弹性体。这种弹性体的生物降解率可控制,物理性能优良。常规方法进行表征。结果表明,PEG基弹性体的降解性能优于PCL基弹性体,而机械性能则低于PCL基弹性体;PCL和PEG混合制备的EUP降解性能和机械性能最佳。  相似文献   

16.
E-300与MOCA扩链聚氨酯弹性体的力学性能比较   总被引:6,自引:1,他引:5  
以聚酯(PEA、PEPA、PCL)或聚醚(PTMG、PPG、PO/PT)和TDI为原料合成聚氨酯(PU)预聚体,分别用MOCA和E-300作扩链剂制备聚氨酯弹性体。比较了这2种扩链剂对PU弹性体力学性能的影响。实验结果表明:MOCA-PU的硬度、模量和强度均大于E-300-PU,E-300-PU的扯断伸长率略高于MOCA-PU。在相同硬度下的聚醚型PU弹性体,E-300-PU比MOCA-PU的撕裂强度高。  相似文献   

17.
首先以聚己内酯多元醇(PCL)、4,4’-二苯基甲烷二异氰酸酯(MDI)、液化MDI和MDI-50为原料合成聚氨酯(PU)预聚体,再用混合扩链剂制备聚氨酯弹性体。讨论了预聚体异氰酸酯基(NCO)含量、异氰酸酯类型、1,3-丁二醇(1,3-BDO)含量、聚酯软段相对分子质量对聚氨酯弹性体力学性能的影响。结果表明:提高预聚体NC0基含量可使弹性体的硬度、300%定伸应力、拉伸强度和撕裂强度明显提高,拉断伸长率和冲击弹性则下降;纯MDI弹性体综合力学性能最好,液化MDI次之,MDI-50最差;提高1,3-BDO含量可使弹性体的硬度、撕裂强度和冲击弹性明显下降;软段相对分子质量为1000的聚氨酯弹性体的硬度、300%定伸应力、拉伸强度和撕裂强度较高,软段相对分子质量为2000的聚氨酯弹性体的拉断伸长率和冲击弹性较高。  相似文献   

18.
以不同结构聚酯(PEA、PEPA、PBA、PCL)为软段,4,4'-二苯基甲烷二异氰酸酯(MDI)和1,4-丁二醇(BDO)为硬段采用预聚体法合成了聚氨酯(PU)弹性体。讨论了MDI/BDO体系中软段种类、相对分子质量、预聚体NC0质量分数及催化剂对聚氨酯弹性体力学性能的影响,并与TDI/MOCA体系进行比较。结果表明,当软段相对分子质量相同时,PBA—PU的硬度最高提高预聚体NCO质量分数可使PU弹性体硬度、撕裂强度和300%模量增加;在制备聚氨酯弹性体中,加入催化剂的弹性体拉伸强度下降16.6%~20.1%;MDI/BDO体系的PU弹性体撕裂强度和冲击弹性较高,TDL/MOCA体系的PU弹性体拉伸强度较好、永久变形较低。  相似文献   

19.
分别以聚ε-己内酯多元醇(PCL)、聚四氢呋喃醚二元醇(55PTMG)和甲苯二异氰酸酯(TDI)为原料合成聚氨酯预聚体,分别用M-CDEA[4,4′-亚甲基-双-(3-氯-2,6-二乙二基苯胺)]和3,3’-二氯-4,4’-二氨基二苯基甲烷(MOCA)作为扩链剂合成聚氨酯弹性体,比较了两种不同扩链剂对聚氨酯弹性体的力学性能和耐热性能的影响。实验结果表明:与MOCA相比,由M-CDEA扩链的聚氨酯弹性体的硬度、撕裂强度、回弹和耐磨性较高。DSC和TG测试结果表明:经M-CDEA扩链的聚氨酯弹性体的耐热性能优于MOCA。  相似文献   

20.
基于四氢呋喃聚醚聚氨酯弹性体力学性能的研究   总被引:7,自引:2,他引:5  
以四氢呋喃聚醚(PTMG)、二异氰酸酯(TDI、或MDI)和扩链剂(MOCA、或BDO)为原料,制备了浇注型和热塑型聚氨酯弹性体。研究了预聚体的NCO基质量份、PTMG的分子量和硬段质量份数对PU弹性体力学性能的影响。结果表明:PU弹性体的硬度和模量随NCO含量和硬段质量份数增加而增加。逐渐提高PTMG的分子量,PU弹性 的拉伸强度降低,而拉断伸长率增加。2000分子量的PTMG-PU弹性体的冲击弹性比1000分子量的PTMG-PU好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号