首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 158 毫秒
1.
Cytosolic acidification stimulates an influx of Ca2+ which results in shedding of the two flagella of Chlamydomonas. Ca2+ influxes are also involved in the photoresponses of this alga, but it is not understood how the acidification-activated Ca2+ influx is distinguished from the Ca2+ influxes which mediate phototaxis and the photophobic response. The present study focuses on the deflagellation-inducing Ca2+ influx pathway. Influx occurs through an ion channel or transporter with low abundance or low permeability to Ca2+ (approximately 500 fmol/s/10(6) cells in 50 microM Ca2+). Ca2+ influx was potently blocked by Cd3+ (EC50 approximately 5 microM), but was insensitive to Cd2+ (Quarmby, L.M., and H.C. Hartzell. 1994. J. Cell Biol. 124:807) and organic blockers of Ca2+ channels including SKF-96365 (up to 100 microM) and flufenamic acid (up to 1 mM). Experiments with a flagella-less mutant (bald-2), isolated flagella, and a blocker of flagellar assembly (colchicine) indicated that the acidification-stimulated Ca2+ influx pathway is not localized to the flagellar membrane. The acid-stimulated influx pathway was transiently inactivated after cells shed their flagella. Inactivation did not occur in the deflagellation mutant, fa-1, although acidification-stimulated Ca2+ influx was normal. This suggests that inactivation of this pathway in wild-type cells is probably not a direct consequence of acidification nor of Ca2+ influx, but may be related to deflagellation. Recovery of deflagellation-inducing Ca2+ influx occurred within 30 min after a 30 s exposure to acid and did not require flagellar assembly. The regulation, drug sensitivity, and subcellular localization identify acidification-stimulated Ca2+ influx as a specific Ca2+ entry pathway distinct from established Ca2+ channels.  相似文献   

2.
Mastoparan, a tetradecapeptide from wasp venom, stimulated exocytosis in a concentration-dependent manner, which was enhanced by pertussis toxin pre-treatment, in the insulin secreting beta-cell line RINm5F. Mastoparan (3-20 microM) also elevated cytosolic free calcium concentration ([Ca2+]i), a rise that was not attenuated by nitrendipine. Divalent cation-free Krebs-Ringer bicarbonate (KRB) medium with 0.1 mM EGTA nullified the mastoparan-induced increase in [Ca2+]i, suggesting that the peptide increased Ca2+ influx but not through the L-type voltage-dependent Ca2+ channel. Depletion of the intracellular Ca2+ pool did not affect the mastoparan-induced elevation of [Ca2+]i. Remarkably, in divalent cation-free KRB medium with 0.1 mM EGTA and 2 microM thapsigargin in which mastoparan reduced [Ca2+]i, the mastoparan-stimulated insulin release was similar to that in normal Ca(2+)-containing KRB medium. Inhibitors of protein kinase C, such as bisindolylmaleimide, staurosporine, and 1-O-hexadecyl-2-O-methyl-rac-glycerol did not suppress the mastoparan-stimulated insulin release. Mastoparan at 10-20 microM did not increase cellular cAMP levels, nor did mastoparan at 5-10 microM affect [3H]arachidonic acid release. In conclusion, although mastoparan increased [Ca2+]i, this increase was not involved in the stimulation of insulin release. Rather, the data suggest that mastoparan directly stimulates exocytosis in a Ca(2+)-independent manner. As GTP-binding proteins (G proteins) are thought to be involved in the process of exocytosis and as mastoparan is known to exert at least some of its effects by activation of G proteins, an action of mastoparan to activate the putative stimulatory Ge (exocytosis) protein is likely.  相似文献   

3.
Extracellular Ca2+ mediates the cellular and molecular responses to cell stimulation of Chlamydomonas reinhardtii. Extracellular Ca2+ concentrations ([Ca2+]e) must exceed certain threshold values to support flagellar excision by acid shock and to stimulate flagellar outgrowth following mechanical shear of the flagella. Also, the magnitude and duration of flagellar RNA accumulations following acid shock or mechanical shear increase with increasing [Ca2+]e. To better understand the role of Ca2+ in flagellar excision, RNA induction, and outgrowth, we have performed a survey of the ion selectivity of each of these responses to acid shock. We found that flagellar excision in vivo following acid shock was supported by Sr2+ and Ca2+, but no other ion tested. LaCl3 and neomycin prevented flagellar excision following acid shock of cells in Ca2+- or Sr2+-containing buffer. Sr2+ addition to detergent-permeabilized cell models, however, failed to elicit flagellar excision in vitro. Cells failed to regrow flagella following flagellar excision in Sr2+-containing buffer unless exogenous Ca2+ was added. Flagellar RNA accumulations of lower magnitude and shorter duration were measured in cells acid-shocked in Sr2+-containing buffer than in Ca2+-containing buffer. These results demonstrate that a Sr2+ influx can evoke flagellar excision following acid shock, but cannot directly activate the machinery for flagellar excision, suggesting that a Sr2+ influx induces excision by stimulating an intracellular Ca2+ release. Furthermore, they suggest that flagellar outgrowth and normal flagellar RNA induction have a strict requirement for Ca2+, which is not satisfied by the proposed intracellular Ca2+ release.  相似文献   

4.
Particulate and soluble (1-3)-beta-glucans are effective in preventing infections by enhancing macrophage and neutrophil functions. However, the mechanisms triggering these enhanced cellular responses are essentially unknown. We recently demonstrated that zymosan, a particulate (1-3)-beta-glucan receptor agonist, caused an influx of Ca2+ in NR8383 rat alveolar macrophages (AMs) and a resulting increase in intracellular Ca2+ (Zhang et al., J. Leukoc. Biol. 62 (1997) 341-348). Since Ca2+ is important in mediating leukocyte responses, we investigated whether other (1-3)-beta-glucans also alter Ca2+ mobilization in AMs. Particulate and soluble (1-3)-beta-glucans derived from Saccharomyces cerevisiae were used in these studies. Like zymosan, particulate (1-3)-beta-glucan (WGPs) caused a concentration-dependent increase in [Ca2+]i, which was inhibited by removal of extracellular Ca2+ and by SKF96365, an inhibitor of receptor-operated Ca2+ channels. When three different soluble (1-3)-beta-glucans, with molecular weights of approximately 11,000, 150,000, and 1,000,000 Da, were tested alone for effects on Ca2+ responses, the low molecular weight (1-3)-beta-glucan produced no effect and the intermediate and high molecular weight (1-3)-beta-glucans caused only a small increase in [Ca2+]i. Interestingly, however, all three soluble (1-3)-beta-glucans could significantly reduce the Ca2+ responses induced by a subsequent exposure to either WGPs or zymosan. These results demonstrate that: 1) particulate (1-3)-beta-glucan activates Ca2+ influx in NR8383 macrophages through receptor-operated Ca2+ channels; 2) soluble (1-3)-beta-glucans do not strongly activate Ca2+ influx in these cells; and 3) soluble (1-3)-beta-glucans significantly inhibit Ca2+ influx induced by WGPs or zymosan. Soluble (1-3)-beta-glucans are likely to prevent Ca2+ influx by competitively binding to the (1-3)-beta-glucan receptors recognizing zymosan and WGPs. The smaller Ca2+ influx induced by soluble (1-3)-beta-glucans may represent only a partial activation of post-receptor signal transduction pathways necessary for inducing Ca2+ influx.  相似文献   

5.
In Fura-2-loaded, freshly isolated rabbit aortic endothelial cells the Ca2+ entry pathway was investigated using the Mn2(+)-quenching technique. Acetylcholine (ACh) interaction with muscarinic receptors activated Mn2+ influx through the plasma membrane. Sarcoplasmic-endoplasmic reticulum Ca2+ ATPase blockers such as cyclopiazonic acid (CPA), thapsigargin and BHQ, which block the endoplasmic reticulum Ca2+ pump and do not interact with receptors, also activated Mn2+ influx. Mn2+ influx activated by either ACh or CPA was blocked by the following agents: SKF96365, a receptor-operated Ca2+ channel (ROC) blocker; NCDC, a PLC and ROC blocker, and genistein, a tyrosine kinase inhibitor. D600, the L-type Ca2+ channel blocker, had no significant effect on Mn2+ influx. Caffeine blocked the ACh-induced Ca2+ release but had no effect on the ACh-induced Mn2+ influx. Similarly dantrolene, which blocked intracellular Ca2+ release induced by ACh, did not affect the ACh-activated Mn2+ influx. These data suggest that ACh can activate Ca2+ influx without depletion of the ACh-sensitive intracellular Ca2+ store. It is concluded (1) that in freshly isolated endothelial cells depletion of the intracellular Ca2+ store is not necessary for ACh-activated Ca2+ influx, and (2) that receptor activation and intracellular Ca2+ store depletion may activate the same Ca2+ entry pathway through parallel mechanisms.  相似文献   

6.
Presynaptic Ca2+ influx through voltage-dependent Ca2+ channels triggers neurotransmitter release. Action potential duration plays a determinant role in the dynamics of presynaptic Ca2+ influx. In this study, the presynaptic Ca2+ influx was optically measured with a low-affinity Ca2+ indicator (Furaptra). The effect of action potential duration on Ca2+ influx and transmitter release was investigated. The K+ channel blocker 4-aminopyridine (4-AP) was applied to broaden the action potential and thereby increase presynaptic Ca2+ influx. This increase of Ca2+ influx appeared to be much less effective in enhancing transmitter release than raising the extracellular Ca2+ concentration. 4-AP did not change the Ca2+ dependence of transmitter release but instead shifted the synaptic transmission curve toward larger total Ca2+ influx. These results suggest that changing the duration of Ca2+ influx is not equivalent to changing its amplitude in locally building up an effective Ca2+ concentration near the Ca2+ sensor of the release machinery. Furthermore, in the presence of 4-AP, the N-type Ca2+ channel blocker omegaCgTx GVIA was much less effective in blocking transmitter release. This phenomenon was not simply due to a saturation of the release machinery by the increased overall Ca2+ influx because a similar reduction of Ca2+ influx by application of the nonspecific Ca2+ channel blocker Cd2+ resulted in much more inhibition of transmitter release. Rather, the different potencies of omega-CgTx GVIA and Cd2+ in inhibiting transmitter release suggest that the Ca2+ sensor is possibly located at a distance from a cluster of Ca2+ channels such that it is sensitive to the location of Ca2+ channels within the cluster.  相似文献   

7.
A collagen peptide motif (DGEA) which is a putative alpha 2 beta 1 integrin binding site was examined for its ability to activate Ca2+ signalling pathways in the human osteoblast-like cell line SaOS-2. We show that these cells express both alpha 2 beta 1 integrin subunits (by immunocytochemistry) and that an anti-beta 1 monoclonal antibody (DF5) mobilizes Ca2+ in these cells. DGEA elevated intracellular Ca2+ in fura-2-loaded cells, in a concentration- and sequence-dependent fashion, with an EC50 of 250 microM. The tyrosine kinase inhibitor herbimycin A reduced the number of cells responding to DGEA and to transforming growth factor alpha. Thrombin also stimulated a rise in intracellular Ca2+, but the number of cells responding was not reduced by herbimycin A. The DGEA response was dependent on extracellular Ca2+, but was not due to Ca2+ influx, since it was blocked by thapsigargin and not by lanthanum. Using three different anti-alpha 2 monoclonal antibodies, we were unable to show that the DGEA-induced Ca2+ signal was mediated by the alpha 2 beta 1 integrin. In summary, the DGEA collagen motif does appear to activate receptor-mediated Ca2+ signalling events in SaOS-2 cells, in a divalent cation-dependent manner, but we were unable to demonstrate a role for alpha 2 beta 1 integrin in this response.  相似文献   

8.
Increases in [Ca2+]i in pancreatic beta cells, resulting from Ca2+ mobilization from intracellular stores as well as Ca2+ influx from extracellular sources, are important in insulin secretion by glucose. Cyclic ADP-ribose (cADPR), accumulated in beta cells by glucose stimulation, has been postulated to serve as a second messenger for intracellular Ca2+ mobilization for insulin secretion, and CD38 is thought to be involved in the cADPR accumulation (Takasawa, S., Tohgo, A., Noguchi, N., Koguma, T., Nata, K., Sugimoto, T., Yonekura, H., and Okamoto, H. (1993) J. Biol. Chem. 268, 26052-26054). Here we created "knockout" (CD38(-/-)) mice by homologous recombination. CD38(-/-) mice developed normally but showed no increase in their glucose-induced production of cADPR in pancreatic islets. The glucose-induced [Ca2+]i rise and insulin secretion were both severely impaired in CD38(-/-) islets, whereas CD38(-/-) islets responded normally to the extracellular Ca2+ influx stimulants tolbutamide and KCl. CD38(-/-) mice showed impaired glucose tolerance, and the serum insulin level was lower than control, and these impaired phenotypes were rescued by beta cell-specific expression of CD38 cDNA. These results indicate that CD38 plays an essential role in intracellular Ca2+ mobilization by cADPR for insulin secretion.  相似文献   

9.
10.
Many forms of neurodegeneration are ascribed to excessive cellular Ca2+ loading (Ca2+ hypothesis). We examined quantitatively whether factors other than Ca2+ loading were determinants of excitotoxic neurodegeneration. Cell survival, morphology, free intracellular Ca2+ concentration ([Ca2+]i), and 45Ca2+ accumulation were measured in cultured cortical neurons loaded with known quantities of Ca2+ through distinct transmembrane pathways triggered by excitatory amino acids, cell membrane depolarization, or Ca2+ ionophores. Contrary to the Ca2+ hypothesis, the relationships between Ca2+ load and cell survival, free [Ca2+]i, and Ca2+-induced morphological alterations depended primarily on the route of Ca2+ influx, not the Ca2+ load. Notably, Ca2+ loading via NMDA receptor channels was toxic, whereas identical Ca2+ loads incurred through voltage-sensitive Ca2+ channels were completely innocuous. Furthermore, accounting quantitatively for Ca2+ loading via NMDA receptors uncovered a previously unreported component of L-glutamate neurotoxicity apparently not mediated by ionotropic or metabotropic glutamate receptors. It was synergistic with toxicity attributable to glutamate-evoked Ca2+ loading, and correlated with enhanced cellular ATP depletion. This previously unrecognized toxic action of glutamate constituted a chief excitotoxic mechanism under conditions producing submaximal Ca2+ loading. We conclude that (a) Ca2+ neurotoxicity is a function of the Ca2+ influx pathway, not Ca2+ load, and (b) glutamate toxicity may not be restricted to its actions on glutamate receptors.  相似文献   

11.
Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) is one of the most abundant protein kinases in the brain and has a broad substrate specificity [M.K. Bennett, N.E. Erondu, M.B. Kennedy, Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain, J. Biol. Chem. 258 (1983) 12735-12744 [1]; J.R. Goldenring, B. Gonzalez, J.S. McGuire, Jr., R.J. DeLorenzo, Purification and characterization of a calmodulin-dependent kinase from rat brain cytosol able to phosphorylate tubulin and microtubule-associated proteins, J. Biol. Chem. 258 (1983) 12632-12640 [4]; M.B. Kennedy, P. Greengard, Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate protein I at distinct sites, Proc. Natl. Acad. Sci. U.S.A. 78 (1981) 1293-1297 [10]; T. Yamauchi, H. Fujisawa, Evidence for three distinct forms of calmodulin-dependent protein kinases from rat brain, FEBS Lett. 116 (1980) 141-144 [20]; T. Yamauchi, H. Fujisawa, Purification and characterization of the brain calmodulin-dependent protein kinase (kinase II), which is involved in the activation of tryptophan 5-monooxygenase, Eur. J. Biochem. 132 (1983) 15-21 [21]]. The alpha and beta isoforms of CaM kinase II are known to be expressed almost exclusively in the brain [P.I. Hanson, H. Schulman, Ca2+/calmodulin-dependent protein kinases, Annu. Rev. Biochem. 61 (1992) 559-601 [7]]. To elucidate the cellular function of CaM kinase II, we introduced cDNA of wild-type CaM kinase II alpha- or beta-isoform, and of mutant alpha-isoform (Ala-286 kinase) into two different types of neuroblastoma, Neuro2a (Nb2a) and NG108-15, thus generating cell lines stably producing elevated levels of these kinases. The mutant alpha-isoform is markedly suppressed in its autophosphorylation by replacement of Thr-286 with Ala [Y.-L. Fong, W.L. Taylor, A.R. Means, T.R. Soderling, Studies of the regulatory mechanism of Ca2+/calmodulin-dependent protein kinase II. Mutation of threonine 286 to alanine and aspartate, J. Biol. Chem. 264 (1989) 16759-16763 [3]; P.I. Hanson, M.S. Kapiloff, L.L. Lou, M.G. Rosenfeld, H. Schulman, Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation, Neuron 3 (1989) 59-70 [6]; S. Ohsako, H. Nakazawa, S. Sekihara, A. Ikai, T. Yamauchi, Role of Threonine-286 as autophosphorylation site for appearance of Ca2+-independent activity of calmodulin-dependent protein kinase II alpha subunit, J. Biochem. 109 (1991) 137-143 [15]]. We provided evidence that CaM kinase II played a role in regulating neurite outgrowth and growth cone motility in these cells, and that the autophosphorylation is essential for the kinase to sufficiently exert its cellular function in vivo [Y. Goshima, S. Ohsako, T. Yamauchi, Overexpression of Ca2+/calmodulin-dependent protein kinase II in Neuro2a and NG108-15 neuroblastoma cell lines promotes neurite outgrowth and growth cone motility, J. Neurosci. 13 (1993) 559-567 [5]]. Neurite outgrowth was further stimulated by treatment with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) or chelerythrine, inhibitors of protein kinase C [T. Nomura, K. Kumatoriya, Y. Yoshimura, T. Yamauchi, Overexpression of alpha and beta isoforms of Ca2+/calmodulin-dependent protein kinase II in neuroblastoma cells-H-7 promotes neurite outgrowth, Brain Res. 766 (1997) 129-141 [14]]. The morphological change stimulated with protein kinase inhibitors was rapid and was greater in the beta than alpha cells. Some substrates of CaM kinase II related to neurite outgrowth were detected in cells overexpressing the kinase stimulated with H-7. These results suggest that CaM kinase II and protein kinase C play an important role in the control of cell change. (c) 1998 Elsevier Science B.V. All rights reserved.  相似文献   

12.
The central role of electrical activity and Ca2+ influx in motoneuron development raises important questions about the regulation of Ca2+ signalling induced by voltage-dependent Ca2+ influx. In the purified embryonic rat motoneuron preparation, we recorded barium currents through voltage-activated Ca2+ channels using the whole-cell configuration of the patch-clamp technique. We found that motoneurons express at least four types of high-voltage-activated Ca2+ channels, based on their kinetics, voltage-dependences and pharmacological properties. Of the sustained Ca2+ current activated at 0 mV from a holding potential of -100 mV, approximately 45% was omega-conotoxin-GVIA (1 microM) sensitive, 25% was omega-agatoxin-IVA (30 nM) sensitive and 20% was nitrendipine (250 nM) sensitive. The residual current, after applying these three antagonists, was an inactivating current that differs from classical T-type Ca2+ currents. Based on this pharmacology, changes in intracellular free Ca2+ concentrations were then monitored by Fura 2 digital imaging microspectrofluorimetry. Upon K+ depolarization, the intracellular Ca2+ transient induced by the activation of each type of Ca2+ channel appeared to be quantitatively proportional to their Ca2+ influx. The existence of a calcium-induced calcium release mechanism through activation of caffeine-, ryanodine-sensitive intracellular stores was then investigated. High doses of caffeine and low doses of ryanodine failed to increase intracellular free calcium concentrations and low concentrations of caffeine and high concentrations of ryanodine did not affect K+-induced intracellular free calcium concentration transients indicating both the absence of Ca2+-gated Ca2+-release channels and of a Ca2+-induced Ca2+ release mechanism. Together, these data provide evidence that embryonic motoneurons express multiple Ca2+ channels that function as important regulators of intracellular Ca2+ signalling and may be involved in their development.  相似文献   

13.
Multideterminant role of calcium in hippocampal synaptic plasticity   总被引:1,自引:0,他引:1  
Hippocampal CA1 cells possess several varieties of long-lasting synaptic plasticity: two different forms of long-term potentiation (LTP) and at least one form of long-term depression (LTD). All forms of synaptic plasticity are induced by afferent activation, all involve Ca2+ influx, all can be blocked by Ca2+ chelators, and all activate Ca(2+)-dependent mechanisms. The question arises as how different physiological responses can be initiated by activation of the same second messenger. We consider two hypotheses which could account for these phenomena: voltage-dependent differences in cytosolic Ca2+ concentration acting upon Ca2+ substrates of differing Ca2+ affinities and compartmentalization of the Ca2+ and its substrates.  相似文献   

14.
The serotonin 5-HT3 receptor, a ligand-gated ion channel, has previously been shown to be present on a subpopulation of brain nerve terminals, where, on activation, the 5-HT3 receptors induce Ca2+ influx. Whereas postsynaptic 5-HT3 receptors induce depolarization, being permeant to Na+ and K+, the basis of presynaptic 5-HT3 receptor-induced calcium influx is unknown. Because the small size of isolated brain nerve terminals (synaptosomes) precludes electrophysiological measurements, confocal microscopic imaging has been used to detect calcium influx into them. Application of 100 nM 1-(m-chlorophenyl)biguanide (mCPBG), a highly specific 5-HT3 receptor agonist, induced increases in internal free Ca2+ concentration ([Ca2+]i) and exocytosis in a subset of corpus striatal synaptosomes. mCPBG-induced increases in [Ca2+]i ranged from 1.3 to 1.6 times over basal values and were inhibited by 10 nM tropisetron, a potent and highly specific 5-HT3 receptor antagonist, but were insensitive to the removal of external free Na+ (substituted with N-methyl-D-glucamine), to prior depolarization induced on addition of 20 mM K+, or to voltage-gated Ca2+ channel blockade by 10 microM Co2+/Cd2+ or by 1 microM omega-conotoxin MVIIC/1 microM oemga-conotoxin GVIA/200 nM agatoxin TK. In contrast, the Ca2+ influx induced by 5-HT3 receptor activation in NG108-15 cells by 1 microM mCPBG was substantially reduced by 10 microM Co2+/Cd2+ and was completely blocked by 1 microM nitrendipine, an L-type Ca2+ channel blocker. We conclude that in contrast to the perikaryal 5-HT3 receptors, presynaptic 5-HT3 receptors appear to be uniquely calcium-permeant.  相似文献   

15.
Soluble immune complexes activate a rapid burst of reactive oxidant secretion from neutrophils that have previously been primed with GM-CSF. Binding of these complexes to the cell surface of unprimed neutrophils results in the generation of intracellular Ca2+ transients, but the NADPH oxidase fails to become activated. No phospholipase D activity was observed following the addition of soluble immune complexes to unprimed cells. Upon priming with GM-CSF, the intracellular Ca2+ signal generated following soluble complex binding was greatly extended and phospholipase D was activated: there was also increased phosphorylation of proteins on tyrosine residues and the NADPH oxidase was activated. When Ca2+ influx was prevented, this phospholipase D activity was not observed. This primed oxidase activity was completely inhibited by erbstatin. Treatment of unprimed neutrophils with pervanadate (to inhibit protein tyrosine phosphatases) mimicked the effects of priming in that pervanadate-treated neutrophils secreted reactive oxidants in response to soluble immune complexes. The data indicate that during priming a new signaling pathway is activated that involves Ca2+ influx, phosphorylation on tyrosine residues, phospholipase D activity, and NADPH oxidase activation.  相似文献   

16.
Prior treatment of NG108-15 cells with phosphatase inhibitors including okadaic acid and calyculin A inhibited the elevation of cytosolic Ca2+ concentration ([Ca2+]i) induced by bradykinin by approximately 63%. This inhibition was dependent on the concentration of okadaic acid with an IC50 of 0.15 nM. Okadaic acid treatment only lowered the maximal response of [Ca2+]i increase and had no effect on the EC50 value for bradykinin regardless of the presence of extracellular Ca2+. Neither the capacity of 45Ca2+ accumulation within intracellular nonmitochondrial Ca2+ stores nor the magnitude of [Ca2+]i increase induced by thapsigargin was reduced by the treatment of okadaic acid. In contrast, the same phosphatase inhibitor treatment inhibited the bradykinin-evoked inositol 1,4,5-trisphosphate (IP3) generation, the Mn2+ influx, and the capacity of mitochondrial Ca2+ accumulation. Furthermore, the sensitivity of IP3 in the Ca2+ release was suppressed by okadaic acid pretreatment. Our results suggest that the reduction of bradykinin-induced [Ca2+]i rise by the promotion of protein phosphorylation was attributed to the reduced activity of phospholipase C, the decreased sensitivity to IP3, and the slowed rate of Ca2+ influx. Thus, phosphorylation plays a role in bradykinin-sensitive Ca2+ signaling cascade in NG108-15 cells.  相似文献   

17.
Whole-cell recordings and Ca2+ flux measurements were made at a giant calyx-type synapse in rat brainstem slices to determine the contribution of glutamate receptor (GluR) channels and voltage-dependent Ca2+ channels (VDCCs) to postsynaptic Ca2+ influx during synaptic transmission. A single presynaptic action potential (AP) evoked an EPSP, followed by a single AP. The EPSP-AP sequence caused a postsynaptic Ca2+ influx of approximately 3.0 pC, primarily through VDCCs ( approximately 70%) and NMDA-type (up to 30%) channels but also through AMPA-type (<5%) GluR channels. At -80 mV, the fractional Ca2+ current (Pf) mediated by AMPA receptor (AMPAR) and NMDA receptor (NMDAR) channels was 1.3 and 11-12%, respectively. Simulations of the time course of Ca2+ influx through GluR channels suggested that the small contribution of AMPAR channels occurred only during the first few milliseconds of an EPSP, whereas influx through NMDAR channels dominated later. The NMDAR-mediated Ca2+ influx was localized in regions covered by the presynaptic terminal, whereas the Ca2+ influx mediated by VDCCs was more homogeneously distributed. Because of the temporal and spatial differences, calcium ions entering through the three different pathways are likely to activate different intracellular targets in the postsynaptic cell.  相似文献   

18.
It has been observed that the activity of Ca2+-calmodulin (CaM)-dependent protein kinase I is enhanced up to 50-fold by its phosphorylation in vitro by a distinct CaM kinase I kinase (Lee, J. C., and Edelman, A. M. (1994) J. Biol. Chem. 269, 2158-2164). It has, however, been unclear whether this event represents an acute form of cellular regulation. We demonstrate here the phosphorylation and activation of CaM kinase I in PC12 pheochromocytoma cells in response to elevation of intracellular Ca2+. Treatment of PC12 cells with the Ca2+-ionophore, ionomycin, or with a depolarizing concentration of KCl, led to rapid, biphasic phosphorylation of CaM kinase I and to increases in CaM kinase I activity of 5.1- and 7. 3-fold, respectively. Depolarization-induced activation of CaM kinase I was reduced by approximately 80% by blockade of Ca2+ influx through L-type voltage-dependent Ca2+ channels and completely abolished by removal of extracellular Ca2+. The ability of PC12 cell CaM kinase I to be phosphorylated and activated by purified CaM kinase I kinase in vitro was markedly reduced by prior depolarization of the cells, consistent with intracellular phosphorylation and activation of CaM kinase I by CaM kinase I kinase. These results demonstrate the existence in PC12 cells of a CaM kinase I cascade, the function of which may be to sensitize cells to signal-induced elevations of intracellular Ca2+.  相似文献   

19.
Activation of stress response genes can impart cellular tolerance to environmental stress. Iodoacetamide (IDAM) is an alkylating toxicant that up-regulates expression of hsp70 (Liu, H., Lightfoot, D. L., and Stevens, J. L. (1996) J. Biol. Chem. 271, 4805-4812) and grp78 in LLC-PK1 renal epithelial cells. Therefore, we used IDAM to determine the role of these genes in tolerance to toxic chemicals. Prior heat shock did not protect cells from IDAM but pretreatment with trans-4,5-dihydroxy-1,2-dithiane (DTTox), thapsigargin, or tunicamycin enhanced expression of the endoplasmic reticulum (ER) chaperones GRP78 and GRP94 and rendered cells tolerant to IDAM. Cells expressing a 524-base pair antisense grp78 fragment (pkASgrp78) had a diminished capacity to up-regulate grp78 and grp94 expression after ER stress. Protection against IDAM due to prior ER stress was also attenuated in pkASgrp78 cells suggesting that ER chaperones of the GRP family are critical for tolerance. Covalent binding of IDAM to cellular macromolecules and depletion of cellular thiols was similar in tolerant and na?ve cells. However, DTTox pretreatment blocked the increases in cellular Ca2+ and lipid peroxidation observed after IDAM treatment. Overexpressing the ER Ca2+-binding protein calreticulin prevented IDAM-induced cell death, the rise in cytosolic Ca2+, and oxidative stress. Although activation of the ER stress response did not prevent toxicity due to Ca2+ influx, EGTA-AM and ruthenium red both blocked cell death suggesting that redistribution of intracellular Ca2+ to the mitochondria may be important in toxicity. The data support a model in which induction of ER stress proteins prevents disturbances of intracellular Ca2+ homeostasis, thus uncoupling toxicant exposure from oxidative stress and cell death. Multiple ER stress proteins are likely to be involved in this tolerance response.  相似文献   

20.
We have used an insertional mutagenesis/ gene tagging technique to generate new Chlamydomonas reinhardtii mutants that are defective in assembly of the uter ynein rm. Among 39 insertional oda mutants characterized, two are alleles of the previously uncloned ODA3 gene, one is an allele of the uncloned ODA10 gene, and one represents a novel ODA gene (termed ODA12). ODA3 is of particular interest because it is essential for assembly of both the outer dynein arm and the outer dynein arm docking complex (ODA-DC) onto flagellar doublet microtubules (Takada, S., and R. Kamiya. 1994. J. Cell Biol. 126:737- 745). Beginning with the inserted DNA as a tag, the ODA3 gene and a full-length cDNA were cloned. The cloned gene rescues the phenotype of oda3 mutants. The cDNA sequence predicts a novel 83. 4-kD protein with extensive coiled-coil domains. The ODA-DC contains three polypeptides; direct amino acid sequencing indicates that the largest of these polypeptides corresponds to ODA3. This protein is likely to have an important role in the precise positioning of the outer dynein arms on the flagellar axoneme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号