首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apricot pulps was pyrolyzed in a fixed-bed reactor under different pyrolysis conditions to determine the role of final temperature, sweeping gas flow rate and steam velocity on the product yields and liquid product composition with a heating rate of 5 °C/min. Final temperature range studied was between 300 and 700 °C and the highest liquid product yield was obtained at 550 °C. Liquid product yield increased significantly under nitrogen and steam atmospheres. For the optimum conditions, pyrolysis of peach pulp was furthermore studied. Liquid products obtained under the most suitable conditions were characterized by FTIR and 1H-NMR. In addition, gas chromatography/mass spectrophotometer was achieved on all pyrolysis oils. Characterization showed that bio-oil could be a potential source for synthetic fuels and chemical feedstock.  相似文献   

2.
Cotton seed, as a biomass source, is pyrolysed in a tubular fixed-bed reactor under various sweeping gas (N2) flow rates at different pyrolysis temperatures. In the non-catalytic work, the maximum bio-oil yield was attained as 48.30% at 550 °C with a sweeping gas flow rate of 200 mL min−1. At the optimum conditions, catalytic pyrolysis of biomass samples was performed with various amounts of MgO catalyst (5, 10, 15, and 20 wt.% of raw material). Catalyst addition decreased the quantity of bio-oil yet increased the quality of bio-oil in terms of calorific value, hydrocarbon distribution and removal of oxygenated groups. It was observed that increasing the amount of catalyst used, decreased the oil yields while increased the gas and char yields. Bio-oils obtained at the optimum conditions were separated into aliphatic, aromatic and polar sub-fractions. After the application of column chromatography, bio-oils were subjected into elemental, FT-IR and 1H NMR analyses. Aliphatic sub-fractions of bio-oils were analyzed by GC–MS. It was deduced that the fuel obtained via catalytic pyrolysis mainly consisted of lower weight hydrocarbons in the diesel range. Finally, obtained results were compared with petroleum fractions and evaluated as a potential source for liquid fuels.  相似文献   

3.
Fast pyrolysis of kraft lignin with partial (air) oxidation was studied in a bubbling fluidized bed reactor at reaction temperatures of 773 and 823 K. The bio-oil vapors were fractionated using a series of three condensers maintained at desired temperatures, providing a dry bio-oil with less than 1% water and over 96% of the total bio-oil energy.Oxygen feed was varied to study its effect on yield, composition, and energy recovery in the gas, char and oil products. The addition of oxygen to the pyrolysis process increased the production of gases such as CO and CO2. It also changed the dry bio-oil properties, reducing its heating value, increasing its oxygen content, reducing its average molecular weight and tar concentration, while increasing its phenolics concentration. The lower reaction temperature of 773 K was preferred for both dry bio-oil yield and quality.Autothermal operation of the pyrolysis process was achieved with an oxygen feed of 72 or 54 g per kg of biomass at the reaction temperatures of 773 and 823 K, respectively. Autothermal operation reduced both yield and total energy content of the dry bio-oil, with relative reductions of 24 and 20% for the yield, 28 and 23% for the energy content, at 773 and 823 K.  相似文献   

4.
《Biomass & bioenergy》2006,30(6):592-598
The purpose of this study is to evaluate the amounts of catalytic pyrolysis products of cottonseed cake in steam atmosphere and investigate the effects of both zeolite and steam on pyrolysis yields. The effect of steam was investigated by co-feeding steam at various velocities (0.6:1.3:2.7 cm s−1) in the presence of zeolite (20 wt% of feed). Liquid pyrolysis products obtained at the most appropriate conditions were fractionated by column chromatography. Elemental analysis and FT-IR were applied on both of these liquid products and their sub-fractions. The H/C ratios obtained from elemental analysis were compared with the petroleum products. The aliphatic sub-fractions of the oils were then analysed by capillary column gas chromatography. Further structural analysis of pyrolysis oil was conducted using 1H-NMR spectroscopy. The characterization has shown that the bio-oil obtained from catalytic and steam pyrolysis of cottonseed cake was more beneficial than those obtained from non-catalytic and catalytic works under static and nitrogen atmospheres.  相似文献   

5.
Agriculture residues such as palmyra fruit bunch are one of the biomass categories that can be utilized for conversion to bio-oil by using pyrolysis process. Flash pyrolysis experiments have been conducted in the electrically heated fluidized bed reactor to determine the effect of pyrolysis temperature, particle size, and sweep gas flow rate on the pyrolysis product yield. In this study the maximum oil yield of 48.2% was achieved at a temperature of 500°C, particle size of 1 mm, and at a sweep gas flow rate of 2 m3/h. The results show that the effects of pyrolysis temperature and particle size on pyrolysis yields are more significant than that of sweep gas flow rate. Bio-oil was identified as a biofuel candidate and it was further upgraded for better-quality biofuel. Various physical and elemental analyses were performed for bio-oil and the same characteristics study was also carried out for biofuel.  相似文献   

6.
Agriculture residues such as palm shell are one of the biomass categories that can be utilized for conversion to bio-oil by using pyrolysis process. Palm shells were pyrolyzed in a fluidized-bed reactor at 400, 500, 600, 700 and 800 °C with N2 as carrier gas at flow rate 1, 2, 3, 4 and 5 L/min. The objective of the present work is to determine the effects of temperature, flow rate of N2, particle size and reaction time on the optimization of production of renewable bio-oil from palm shell. According to this study the maximum yield of bio-oil (47.3 wt%) can be obtained, working at the medium level for the operation temperature (500 °C) and 2 L/min of N2 flow rate at 60 min reaction time. Temperature is the most important factor, having a significant positive effect on yield product of bio-oil. The oil was characterized by Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) techniques.  相似文献   

7.
Pyrolysis is one of the potential routes to harmless energy and useful chemicals from biomass. The pyrolysis of Albizia amara was studied for determining the main characteristics and quantities of liquid products. Particular investigated process variables were temperature from 350 to 550°C, particle size from 0.6 to 1.25 mm, and heating rate from 10 to 30 °C/min. The maximum bio-oil yield of 48.5 wt% at the pyrolysis temperature of 450°C was obtained at the particle size of 1.0 mm and at the heating rate of 30 °C/min. The bio-oil product was analyzed for physical, elemental, and chemical composition using Fourier transform infrared spectroscopy and gas chromatography spectroscopy. The bio-oil contains mostly phenols, alkanes, alkenes, saturated fatty acids and their derivatives. According to the experimental results, the pyrolysis bio-oil can be used as low-grade fuel having heating value of 18.63 MJ/kg and feedstock for chemical industries.  相似文献   

8.
In this work palm shell waste was pyrolyzed to produces bio-oil. The effects of several parameters on the pyrolysis efficiency were tested to identify the optimal bio-oil production conditions. The tested parameters include temperature, N2 flow rate, feed-stock particle size, and reaction time. The experiments were conducted using a fix-bed reactor. The efficient response surface methodology (RSM), with a central composite design (CCD), were used for modeling and optimization the process parameters. The results showed that the second-order polynomial equation explains adequately the non-linear nature of the modeled response. An R2 value of 0.9337 indicates a sufficient adjustment of the model with the experimental data. The optimal conditions found to be at the temperature of 500 °C, N2 flow rate of 2 L/min, particle size of 2 mm and reaction time of 60 min and yield of bio-oil was approximately obtained 46.4 wt %. In addition, Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) were used to characterize the gained bio-oil under the optimum condition.  相似文献   

9.
This study reports the experimental results for the pyrolysis of pistachio shell under different conditions in a tubular reactor under a nitrogen flow. For the different conditions of pyrolysis temperature, nitrogen flow rate and heating rate, pyrolysis temperature of 773 K gave the highest bio-oil yield with a value of 27.7% when the heating rate and carrier gas flow rate were chosen as 300 K min−1 and 100 cm3 min−1, respectively. Column chromatography was applied to this bio-oil and its subfractions were characterized by elemental analysis, FT-IR and 1H-NMR. Aliphatic subfraction was conducted to gas chromatography–mass spectroscopy for further characterization. The results for the characterization show that using pistachio shell as a renewable source to produce valuable liquid products is applicable via pyrolysis. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Thermo-kinetic models for biomass pyrolysis were simulated under both isothermal and non-isothermal conditions to predict the optimum parameters for bio-oil production. A comparative study for wood, sewage sludge, and newspaper print pyrolysis was conducted. The models were numerically solved by using the fourth order Runge–Kutta method in Matlab-7. It was also observed that newspaper print acquired least pyrolysis time to attain optimum bio-oil yield followed by wood and sewage sludge under the identical conditions of temperature and heating rate. Thus, at 10 K/min, the optimum pyrolysis time was 21.0, 23.8, and 42.6 min for newspaper print, wood, and sewage sludge, respectively, whereas the maximum bio-oil yield predicted was 68, 52, and 36%, respectively.  相似文献   

11.
In this study, pyrolysis of tomato waste has been performed in fixed bed tubular reactor at 500 °C, both in absence and presence of Cu/Al2O3 catalyst. The influences of heating rate, catalyst preparation method and catalyst loading on bio-oil yields and properties were examined. According to pyrolysis experiments, the highest bio-oil yield was obtained as 30.31% with a heating rate of 100 °C/min, 5% Cu/Al2O3 catalyst loading ratio and co-precipitation method. Results showed that the catalysts have strong positive effect on bio-oil yields. Bio-oil quality obtained from fast catalytic pyrolysis was more favorable than that obtained from non-catalytic and slow catalytic pyrolysis.  相似文献   

12.
以成型松木颗粒为原料,进行低温热解,研究了热解温度和升温速率对生成的松木半焦产率及官能团的影响。以试验得到的松木半焦进行蒸汽气化试验,对比分析了温度对半焦重整气化形貌特征、比表面积和平均孔径的影响。研究表明:随着热解温度升高,松木半焦脂肪族结构峰消失转化为烃等小分子物质及气化气,进而降低半焦产率。升温速率升高,半焦产率呈先下降后升高的趋势,在800℃升温速率为30K/min时半焦产率最低。不同温度热解和蒸汽气化对比试验表明,温度相对较低时(500℃)热解和蒸汽气化半焦孔隙结构相近,随着温度的升高,蒸汽气化半焦结构发生明显变化,900°C时出现了更小的孔道结构且比表面积增加明显。蒸汽引入使松木半焦和水蒸气发生热解反应的同时发生了脱氢反应,气化半焦形貌出现熔融和烧结现象。  相似文献   

13.
In the present work, fast pyrolysis of Alternanthera philoxeroides was evaluated with a focus to study the chemical and physical characteristics of bio-oil produced and to determine its practicability as a transportation fuel. Pyrolysis of A.philoxeroides was conducted inside a semi batch quartz glass reactor to determine the effect of different operating conditions on the pyrolysis product yield. The thermal pyrolysis of A. philoxeroides were performed at a temperature range from 350 to 550 °C at a constant heating rate of 25 °C/min & under nitrogen atmosphere at a flow rate of 0.1 L/min, which yielded a total 40.10 wt.% of bio-oil at 450 °C. Later, some more sets of experiments were also performed to see the effect on pyrolysis product yield with change in operating conditions like varying heating rates (50 °C/min, 75 °C/min & 100 °C/min) and different flow rates of nitrogen (0.2, 0.3, 0.4 & 0.5 L/min). The yield of bio-oil during different heating rate (25, 50, 75 and 100 °C/min) was found to be more (43.15 wt.%) at a constant heating rate of 50 °C/min with 0.2 L/min N2 gas flow rate and at a fixed pyrolysis temperature of 450 °C. The High Heating Value (HHV) value of bio-oil (8.88 MJ/kg) was very less due to presence of oxygen in the biomass. However, the high heating value of bio-char (20.41 MJ/kg) was more, and has the potential to be used as a solid fuel. The thermal degradation of A. philoxeroides was studied in TGA under inert atmosphere. The characterization of bio-oil was done by elemental analyser (CHNS/O analyser), FT-IR, & GC/MS. The char was characterized by elemental analyser (CHNS/O analysis), SEM, BET and FT-IR techniques. The chemical characterization showed that the bio-oil could be used as a transportation fuel if upgraded or blended with other fuels. The bio-oil can also be used as feedstock for different chemicals. The bio-char obtained from A. philoxeroides can be used for adsorption purposes because of its high surface area.  相似文献   

14.
Slow pyrolysis of giant mullein (Verbascum thapsus L.) stalks have been carried out in a fixed-bed tubular reactor with (Al2O3, ZnO) and without catalyst at four different temperatures between 400 to 550°C with a constant heating rate of 50°C/min and with a constant sweeping gas (N2) flow rate of 100 cm3/min. The amounts of bio-char, bio-oil, and gas produced were calculated and the compositions of the obtained bio-oils were determined by gas chromatography-mass spectrometry. The effects of pyrolysis parameters, such as temperature and catalyst, on the product yields were investigated. The results show that both temperature and catalyst have significant effects on the conversion of Verbascum thapsus L. into solid, liquid, and gaseous products. The highest liquid yield of 40.43% by weight including the aqeous phase was obtained with 10% zinc oxide catalyst at 500°C temperature. Sixty-seven different products were identified by gas chromatography-mass spectrometry in the bio-oils obtained at 500°C temperature.  相似文献   

15.
Pyrolysis of Xanthium strumarium has been performed in a fixed-bed tubular reactor with boron minerals (ulexite, colemanite, and borax) and without catalyst at three different temperatures ranging from 350°C to 550°C with heating rate of 50°C/min. The amounts of bio-oil, bio-char, and gas generated, also the compositions of the resulting bio-oils were identified by GC-MS and FT-IR. The influences of pyrolysis parameters, such as temperature and catalyst on product yields were investigated. Temperature and catalyst were found to be the main factors affecting the conversion of Xanthium strumarium into solid, liquid, and gaseous products. The highest liquid yield (27.97%) including water was obtained with 10% colemanite (Ca2B6O11.5H2O) catalyst at 550°C temperature at a heating rate of 50°C/min when 0.224 > Dp > 0.150 mm particle size raw material and 100 cm3/min of sweeping gas flow rate were used.  相似文献   

16.
Jatropha curcas waste was subjected to catalytic pyrolysis at 873 K using an analytical pyrolysis–gas chromatography/mass spectrometry in order to investigate the relative effect of various metal oxide/activated carbon (M/AC) catalysts on upgrading bio-oil from fast pyrolysis vapors of Jatropha waste residue. A commercial AC support was impregnated with Ce, Pd, Ru or Ni salts and calcined at 523 K to yield the 5 wt.% M/AC catalysts, which were then evaluated for their catalytic deoxygenation ability and selectivity towards desirable compounds. Without a catalyst, the main vapor products were fatty acids of 60.74% (area of GC/MS chromatogram), while aromatic and aliphatic hydrocarbon compounds were presented at only 11.32%. Catalytic pyrolysis with the AC and the M/AC catalysts reduced the oxygen-containing (including carboxylic acids) products in the pyrolytic vapors from 73.68% (no catalyst) to 1.60–36.25%, with Ce/AC being the most effective catalyst. Increasing the Jatropha waste residue to catalyst (J/C) ratio to 1:10 increased the aromatic and aliphatic hydrocarbon yields in the order of Ce/AC > AC > Pd/AC > Ni/AC, with the highest total hydrocarbon proportion obtained being 86.57%. Thus, these catalysts were effective for deoxygenation of the pyrolysis vapors to form hydrocarbons, with Ce/AC, which promotes aromatics, Pd/AC and Ni/AC as promising catalysts. In addition, only a low yield (0.62–7.80%) of toxic polycyclic aromatic hydrocarbons was obtained in the catalytic fast pyrolysis (highest with AC), which is one advantage of applying these catalysts to the pyrolysis process. The overall performance of these catalysts was acceptable and they can be considered for upgrading bio-oil.  相似文献   

17.
Main characteristics of gaseous yield from steam gasification have been investigated experimentally. Results of steam gasification have been compared to that of pyrolysis. The temperature range investigated were 600–1000 °C in steps of 100 °C. Results have been obtained under pyrolysis conditions at same temperatures. For steam gasification runs, steam flow rate was kept constant at 8.0 g/min. Investigated characteristics were evolution of syngas flow rate with time, hydrogen flow rate and chemical composition of syngas, energy yield and apparent thermal efficiency. Residuals from both processes were quantified and compared as well. Material destruction, hydrogen yield and energy yield is better with gasification as compared to pyrolysis. This advantage of the gasification process is attributed mainly to char gasification process. Char gasification is found to be more sensitive to the reactor temperature than pyrolysis. Pyrolysis can start at low temperatures of 400 °C; however char gasification starts at 700 °C. A partial overlap between gasification and pyrolysis exists and is presented here. This partial overlap increases with increase in temperature. As an example, at reactor temperature 800 °C this overlap represents around 27% of the char gasification process and almost 95% at reactor temperature 1000 °C.  相似文献   

18.
The characteristics of syngas evolution during pyrolysis and gasification of waste rubber have been investigated. A semi-batch reactor was used for the thermal decomposition of the material under various conditions of pyrolysis and high temperature steam gasification. The results are reported at two different reactor temperatures of 800 and 900 °C and at constant steam gasifying agent flow rate of 7.0 g/min and a fixed sample mass. The characteristics of syngas were evaluated in terms of syngas flow rate, hydrogen flow rate, syngas yield, hydrogen yield and energy yield. Gasification resulted in 500% increase in hydrogen yield as compared to pyrolysis at 800 °C. However, at 900 °C the increase in hydrogen was more than 700% as compared to pyrolysis. For pyrolysis conditions, increase in reactor temperature from 800 to 900 °C resulted in 64% increase in hydrogen yield while for gasification conditions a 124% increase in hydrogen yield was obtained. Results of syngas yield, hydrogen yield and energy yield from the rubber sample are evaluated with that obtained from woody biomass samples, namely hard wood and wood chips. Rubber gasification yielded more energy at the 900 °C as compared to biomass feedstock samples. However, less syngas and less hydrogen were obtained from rubber than the biomass samples at both the temperatures reported here.  相似文献   

19.
This paper describes catalytic hydrogenation liquefaction of rice straw over metal (Ni, Co, and Cu)-modified CeO2 catalysts for bio-oil production. The results show that the highest rice straw conversion (89.08%) and bio-oil yield (66.7%) were obtained over Ni/CeO2 catalyst. The bio-oil contains mainly phenols, high-value-added, and widely used chemicals. Furthermore, metal-modified CeO2 catalysts can significantly influence the components of bio-oil with the highest percentage of C7-C10 compounds. This work thus demonstrates that metal/CeO2 catalysts can be effective in improving the bio-oil yield and selectivity in hydro-liquefaction of rice straw into bio-oil.  相似文献   

20.
In this study, the gas production behavior from the steam gasification of the biochar derived from the pruned apple brunch was investigated using a fixed-bed reactor. The optimal biochar obtained at the pyrolysis temperature of 550 °C was gasified under different operating conditions for the hydrogen rich gas production. The experimental results indicated that high reaction temperature and high water flow rate were both beneficial to the hydrogen gas yield, but excess steam had a negative impact contrarily. Besides, the small size particles (0.5–1.0 mm) showed better performance in the hydrogen gas production at the low water flow rates (0.05–0.20 g/min); while the large size particles (1.0–2.8 mm) showed better performance at the high water flow rates (0.25–0.30 g/min). The suitable operating conditions for the gasification of the biochar were determined as the reaction temperature of 850 °C, water flow rate of 0.25 g/min, and particle size of 1.0–2.8 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号