首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
对渗铝过程中可能发生的化学反应进行了热力学计算,根据热力学原理及扩散理论,研究了渗剂中铝原子向钢件表面传递的过程,并导出了估算HK40钢渗铝动力学方程的计算方法,应用此法计算所得的数值与实验结果基本吻合.  相似文献   

2.
机械能助渗铝技术是通过机械能与热能相结合,可以明显降低渗铝的温度与保温时间的一种先进工艺方法. 研究结果表明:机械能助渗铝在600℃下保温3h可以得到100μm以上的渗铝层;机械能助渗铝过程中由于滚筒持续的机械转动增加了渗铝剂与试样表面之间、渗剂内各组分之间的接触几率. 颗粒与试样之间的摩擦能净化试样表面,增强表面活性,加快铝原子在试样表面的反应形核速率;由颗粒冲击而形成的大量晶体缺陷降低了扩散激活能,因此可以在较低温度下形成扩散层.  相似文献   

3.
机械能助渗铝技术是通过机械能与热能相结合,可以明显降低渗铝的温度与保温时间的一种先进工艺方法.研究结果表明:机械能助渗铝在600℃下保温3 h可以得到100μm以上的渗铝层;机械能助渗铝过程中由于滚筒持续的机械转动增加了渗铝剂与试样表面之间、渗剂内各组分之间的接触几率.颗粒与试样之间的摩擦能净化试样表面,增强表面活性,加快铝原子在试样表面的反应形核速率;由颗粒冲击而形成的大量晶体缺陷降低了扩散激活能,因此可以在较低温度下形成扩散层.  相似文献   

4.
用热浸法对含碳量不同的材料20、T10钢和HT15—33灰口铸铁进行渗铝。研究了几种材料渗铝后渗层的组织和相结构、渗层的耐高温氧化性和耐H_2S腐蚀性能。并运用数学回归方法计算出铝在不同实验材料中的扩散激活能。讨论了渗铝机理以及渗镀工艺因素对渗层质量的影响,以期为在生产上扩大渗铝工艺的应用提供实验依据。  相似文献   

5.
通过自行设计的交流电场增强装置强化粉末法渗铝.该装置通过渗罐壁电极和置于渗罐中央的柱状电极,对置于两极之间的试样与渗剂施加交流电场.对低碳20钢进行中低温下的交流电场增强粉末法渗铝试验,研究新渗铝技术的特性.结果表明:施加适当的交流电场可以显著促进低碳20钢在中低温外热条件下的渗铝过程,改善渗层表层相结构;在低至600℃的外热温度时,施加2A电流的交流电场,渗铝层厚度可达到130μm以上.  相似文献   

6.
通过X-射线衍射、透射电镜(TEM)、扫描电镜(SEM)和电子探针(EPMA),等测试技术分析和讨论了铝对GL渗铝铜管焊接时Cr-Ni奥氏体焊缝金属组织和性能的影响。结果表明:GL渗铝钢渗铝层主要由FeAl,Fe_3Al和α-Fe(Al)固溶体组诚,晶粒细小,可焊性好;在渗铝钢焊接过程中,铝使Cr-Ni奥氏体焊缝金属中的δ铁素体的数量和形态发生变化,但在δ铁素体中并不富铝,铝元素在δ相和γ相中的分布是随机的。  相似文献   

7.
以2:1的氧化铝加木炭粉为填充剂,10%铝粉为供铝剂,3%氯化铵为催渗剂,可使铝粉含量降到10%的新型固体渗铝工艺,不仅能在钢铁表面获得厚而均匀的渗铝层,而且渗剂用后松散性好,试样表面光洁,不存在传统固体渗铝工艺的粘结问题,渗铝件的抗高温氧化性及耐蚀能力远远高于未渗件并可与不锈钢相媲美。固体渗铝新工艺的研究@由向群@郗丽清  相似文献   

8.
固体渗铝新工艺的研究   总被引:1,自引:0,他引:1  
以2∶1的氧化铝加木炭粉为填充剂,10%铝粉为供铝剂,3%氯化铵为催渗剂,可使铝粉含量降到10%的新型固体渗铝工艺,不仅能在钢铁表面获得厚而均匀的渗铝层,而且渗剂用后松散性好,试样表面光洁,不存在传统固体渗铝工艺的粘结问题,渗铝件的抗高温氧化性及耐蚀能力远远高于未渗件并可与不锈钢相媲美。  相似文献   

9.
研究了不同影响因素对GCr15高碳钢固体粉末包埋渗铝后渗铝层表面、截面及厚度的影响.通过调整渗铝温度、时间、Al粉含量、NH_4Cl含量来观察渗铝后试样表面状况,以确定最佳渗铝工艺.利用扫描电子显微镜观察了渗铝层截面的微观形貌;利用测厚仪测量渗层的厚度值.结果表明:随渗铝温度的升高、渗铝时间的延长以及Al粉含量的增加,渗铝层的厚度均呈现先增大后逐渐平缓的趋势;当催化剂NH_4Cl含量添加为2.5%时,所得渗层表面平整洁净.采用Al粉含量为25%、NH_4Cl含量为2.5%、850℃、3 h工艺渗铝后,渗铝层的厚度达到70μum以上,表面平整.  相似文献   

10.
应用电化学方法及形貌观察研究了表面渗铝Q235钢在弱酸性卤水中的腐蚀行为.结果表明:在Cl-浓度为0.3 mol/L,pH=6的40℃的NaCl溶液中,渗铝层起到了阻止Q235钢基体腐蚀的作用,渗铝层主要是由Al,Fe化合物组成.Q235表面腐蚀产物疏松、容易脱落,渗铝钢表面腐蚀产物致密、均匀.渗铝钢表层形成的Al,Fe化合物连续致密,具有高效保护作用,Al-Fe合金渗层起到阴极保护的作用.  相似文献   

11.
为了防止模具表面产生热疲劳裂纹,通过冷喷涂在8407钢试样表面形成了一层铝涂层,再进行扩散处理,在试样表面形成了渗层.通过理论分析确定低温渗铝的工艺参数,并与渗铝实验进行检验,重点研究了扩散温度和扩散时间对渗层质量的影响.结果表明,8407钢经过冷喷涂铝后再进行扩散处理能够实现低温渗铝.在550℃下扩散4 h左右形成的渗层质量比较理想.  相似文献   

12.
对8407模具钢试样进行热浸渗铝,在试样表面形成了Fe—Al合金渗层.对渗铝试样进行高温氧化实验,使渗层表面形成了Fe—Al-O的混合氧化物.考察了渗铝温度和渗铝时间对渗层质量的影响;着重研究了不同氧化气氛下Fe—Al合金表面的氧化情况,确定了最佳高温氧化工艺.结果表明,8407钢热浸镀铝后,在600℃以下、纯O2气氛条件下氧化,Fe—Al合金表面生成了Fe3O4和Al2O的混合物.这层氧化膜与铝液不润湿,能较好地保护试样.因此这种工艺可能是合适的铝合金压铸模表面处理工艺.  相似文献   

13.
本文在统计分析大量HK40性能数据基础上,提出了基于K-D法的HK40剩余寿命外推公式:t_r=exp(ā-10.36logσ+12000/T),其中的值:ā=(1/n)sum from l=1 to n(lnt_n-(42000/T_l)+10.36logσ_l)。公式物理意义明确,并得到良好验证。  相似文献   

14.
结合寿命损耗率理论,在综合考虑材料的持久性能、裂纹长度、内外壁温差、应力分布和组织变化情况下,在微机上实现了对炉管寿命损耗的模拟。  相似文献   

15.
碱性激发钢渣水化活性的研究   总被引:1,自引:0,他引:1  
介绍了采用各种碱性激发剂对转炉钢渣水化活性激发情况,用90%钢渣、5%碱性激发剂、5%无水石膏混合配制钢渣水泥时发现:采用含Na2SiO3的固体复合激发剂可以获得和水玻璃相近的激发效果,其中28 d的抗折强度为3.7 MPa,抗压强度为17MPa,采用固体碱性激发剂激发10%熟料、40%高炉矿渣和40%钢矿渣水泥样品的抗折强度和抗压强度可以达到5.2,24 MPa.  相似文献   

16.
针对大跨度预应力混凝土箱梁桥普遍出现的长期变形过大的问题,通过对预应力钢束配置进行优化,降低最大悬臂施工阶段的初始位移,进而减小过大的长期变形,达到挠度控制的目的.构建单位预应力的挠度矩阵,以挠度为控制目标,利用ANSYS进行钢束优化求解得到钢束最优配置.结果表明,优化设计后的挠度较恒载零弯矩法减小40%.利用ANSYS进行钢束优化设计的方法对预应力混凝土箱梁桥的长期变形控制具有良好的效果.  相似文献   

17.
从钻削力、钻削扭矩、刀具耐用度等方面对比了40Cr调质钢与45碳钢、QT50—5球墨铸铁的钻削加工性。采用正交回归方法进行试验设计与处理,建立了钻削力、钻削扭矩及刀具耐用度的经验公式,实验结果表明:40Cr钢的钻削加工性与45钢相当,比QT50—5的钻削加工性要差  相似文献   

18.
采用二元叠加配合比设计方法配制强度等级为CF40—CF60的钢纤维混凝土,测试了钢纤维混凝土拌合物的坍落度,并观察了拌合物的和易性和黏聚性.试验结果表明:钢纤维混凝土拌合物的坍落度呈现出随钢纤维体积分数增大而降低、随纤维裹浆厚度增加而提高的变化规律;其工作性能良好,满足流动性混凝土的浇筑要求.  相似文献   

19.
深基坑工程的钢支撑轴力初始实测值时常小于设计预加力。预加力的不足严重影响钢支撑的支撑效果,是造成深基坑围护墙出现较大变形的一个重要因素。以南京某地铁车站深基坑工程为例,运用Midas GTS软件建立二维数值计算模型。基于现场监测数据与数值计算结果,验证了计算模型与参数的合理性;分析不同预加力值对围护墙水平位移值、钢支撑最终轴力值的影响。研究表明:预加力是克服钢支撑的理论抗压刚度小的有效方法,是提高钢支撑的实际抗压刚度的手段;以钢支撑轴力设计值为参考,预加力比值与围护墙深层水平位移最大值具有负线性关系,对支撑轴力最终值的影响不显著;从施加的预加力效果看,预加力比值为40%时,经济性最佳。最后提出了低、高双向预警和对应的预加力取值方法。  相似文献   

20.
针对钢筋混凝土结构承载力和工程造价要求,采用罚函数法,对钢筋混凝土梁的截面尺寸和钢筋的用量进行优化设计.提出了采用矩阵实验室(MATLAB)优化工具箱的方法,对C20到C40混凝土和HRB335,HRB400钢筋进行多种组合.结果显示在满足承载力要求及规范所规定的构造要求条件下,选用C35和HRB400为最经济的设计方案.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号