首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ZnO/ZnMn2O4 nanocomposite (ZnMn) was used as adsorbent for the removal of cationic dye Basic Yellow 28 (BY28) from aqueous solutions. The adsorbent was characterized by X-ray diffraction, scanning electron microscope, TEM, Fourier transform infrared ray, BET, particle size distribution and zeta potential measurements. The adsorption parameters, such as temperature, pH and initial dye concentration, were studied. Kinetic adsorption data were analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The Langmuir and Freundlich isotherm models were applied to fit the equilibrium data. The maximum adsorption capacity of BY28 was 48.8 mg g?1. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were calculated.  相似文献   

2.
The present study explains the preparation and application of sulfuric acid–treated orange peel (STOP) as a new low-cost adsorbent in the removal of methylene blue (MB) dye from its aqueous solution. The effects of temperature on the operating parameters such as solution pH, adsorbent dose, initial MB dye concentration, and contact time were investigated for the removal of MB dye using STOP. The maximum adsorption of MB dye onto STOP took place in the following experimental conditions: pH of 8.0, adsorbent dose of 0.4 g, contact time of 45 min, and temperature of 30°C. The adsorption equilibrium data were tested by applying both the Langmuir and Freundlich isotherm models. It is observed that the Freundlich isotherm model fitted better than the Langmuir isotherm model, indicating multilayer adsorption, at all studied temperatures. The adsorption kinetic results showed that the pseudo-second-order model was more suitable to explain the adsorption of MB dye onto STOP. The adsorption mechanism results showed that the adsorption process was controlled by both the internal and external diffusion of MB dye molecules. The values of free energy change (ΔG o) and enthalpy change (ΔH o) indicated the spontaneous, feasible, and exothermic nature of the adsorption process. The maximum monolayer adsorption capacity of STOP was also compared with other low-cost adsorbents, and it was found that STOP was a better adsorbent for MB dye removal.  相似文献   

3.
《分离科学与技术》2012,47(6):903-912
The adsorption of malachite green (MG) dye using coconut shell based activated carbon (CSAC) was investigated. Operational factors such as the effect of pH, initial dye concentration, adsorbent dosage, contact time, and solution temperature on the adsorption process were studied. Solution pH strongly affected the chemistry of both the dye molecule and CSAC in solution. Optimum dye removal was obtained at pH ≥ 8.0. Equilibrium was reached in 120 minutes contact time. The Langmuir, Freundlich, and Dubinin–Radushkevich (D-R) isotherm models were used to evaluate the adsorption data. The adsorption data fitted the Langmuir model most with maximum adsorption monolayer coverage of 214.63 mg/g. Pseudo-first-order, pseudo second-order, and intraparticle diffusion models were also used to fit the experimental data. Kinetic parameters, rate constants, equilibrium sorption capacities, and related correlation coefficients, for each model were calculated and discussed. Thermodynamic parameters such as ΔG0, ΔH0, and ΔS0 were evaluated and it was found that the sorption process was feasible, spontaneous, and exothermic in nature. The mean free energy obtained from D-R isotherm suggests that the adsorption process follows physiosorption mechanism. The results showed that coconut shells could be employed as a low-cost precursor in activated carbon preparation for the removal of MG dye from wastewaters.  相似文献   

4.
《分离科学与技术》2012,47(12):1966-1976
The present study explores the ability of a new adsorbent—conch shell powder (CSP) in removing Malachite Green from aqueous solutions. The effect of various process parameters, namely initial solution pH, temperature, initial dye concentration, adsorbent dose, and contact time was investigated. Adsorption equilibrium data were well described by the Langmuir isotherm with maximum adsorption capacity of 92.25 mg g?1 at 303 K. The kinetic data conformed to the pseudo-second-order kinetic model. A thermodynamic study showed the spontaneous nature and feasibility of the adsorption process. The results provide strong evidence to support the hypothesis of adsorption mechanism.  相似文献   

5.
Experimental investigations were carried out using commercially available kaolin to adsorb two different toxic cationic dyes namely crystal violet and brilliant green from aqueous medium. Kaolin was characterized by performing particle size distribution, BET surface area measurement and XRD analysis. The effects of initial dye concentration, contact time, adsorbent dose, stirring speed, pH, salt concentration and temperature were studied in batch mode. The extent of adsorption was strongly dependent on pH of solution. Free energy of adsorption (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) changes were calculated. Adsorption kinetic was verified by pseudo-first-order, pseudo-second-order and intra-particle-diffusion models. The rate of adsorption of both crystal violet and brilliant green followed the pseudo-second-order model for the dye concentrations studied in the present case. The dye adsorption process was found to be external mass transfer controlled at earlier stage and intra-particle diffusion controlled at later stage. Calculated external mass transfer coefficient showed that crystal violet dye adsorbed faster than brilliant green on kaolin. Adsorption of crystal violet and brilliant green on kaolin followed the Langmuir adsorption isotherm.  相似文献   

6.
采用Box-Behnken响应曲面优化设计对荔枝皮吸附去除水中染料孔雀绿(MG)的影响因素(如吸附时间、吸附剂用量、pH值)进行研究,建立了去除率和上述因素之间的二次多项式模型,得到荔枝皮吸附孔雀绿的最佳吸附条件为:温度25℃、吸附时间122.31min、吸附剂用量2.81g/L、pH=6.75、MG浓度为100mg/L,最优条件下荔枝皮对孔雀绿的吸附去除率可以达99.75%。用Langmuir和Freundlich方程对吸附等温线进行拟合,其中Langmuir方程拟合效果最好,其最大吸附量为142.86mg/g,且吸附过程符合假二次动力学模型。此外,热力学结果表明,荔枝皮对孔雀绿的吸附属于自发的吸热过程。结合吸附-解吸循环实验和对吸附的FT-IR表征,表明荔枝皮是一种极具潜力的高效的吸附剂,能有效去除水中的孔雀绿离子。  相似文献   

7.
Native, iminodiacetic acid and triethylenetetraamine modified biomasses of Funalia trogii were used for removal of Congo Red dye (CRD) from aqueous medium. The native and modified fungal biomasses were characterized using ATR-FTIR, Zeta potential, contact angle studies and analytical methods. FTIR studies of the native and chemically modified adsorbent preparations show that amine, carboxyl and hydroxyl groups are involved in the adsorption of the model dye (i.e., Congo Red). The maximum adsorption of the CRD on the native, carboxyl and amine groups modified fungal biomasses was obtained at pH 5.0. The amount of adsorbed dye on the adsorbent samples increased as the initial concentration of CRD in the solution increased to 200mg/L. The adsorption capacities of native, carboxyl groups and amine modified fungal preparations were 90.4, 153.6 and 193.7mg/g dry adsorbents, respectively. The data was fitted well with the Langmuir isotherm model, and followed the pseudo-second-order equations. Thermodynamic parameters (ΔG o , ΔH o and ΔS o ) were also calculated. The results showed that triethylenetetraamine (TETA) modified biomass of F. trogii presented an excellent dye removal performance and can be used in various environmental applications such as various micro-pollutants removal from aqueous medium.  相似文献   

8.
In this study, removal of the cationic dye acridine orange (AO) from aqueous solution using 4A zeolite was studied. The adsorption experiments were performed using batch system, and full factorial design was employed for investigating the condition of removal efficiency of dye. The four most important operating variables were the initial pH of the solution, the concentration of dye, the contact time, and the temperature. The 18 experiments were required to investigate the effect of variables on removal of the dye. The results were statistically analyzed to define important experimental variables and their levels using the analysis of variance (ANOVA). A regression model that considers the significant main and interaction effects was suggested and fitted the experimental data very well. Model predictions were found to be in good agreement (R2 = 99.99%, adjusted R2 = 99.86%) with experimental data. The optimized conditions for dye removal were at initial pH 3.0, 20.0 mg L?1 dye, temperature 298.0 K and 80.0 min adsorption time. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Sips adsorption models. The maximum predicted adsorption capacities for AO was obtained as 29.851 mg g?1. The adsorption thermodynamic parameters, namely ΔH°ads, ΔG°ads and ΔS°ads, were determined. Furthermore, the kinetic of AO adsorption on the 4A zeolite was analyzed using pseudo-first- and second-order kinetic models and the results showed that the removal was mainly a pseudo-second-order process.  相似文献   

9.
《Dyes and Pigments》2008,76(3):701-713
The use of low-cost and ecofriendly adsorbents was investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. Sepiolite was used as an adsorbent for the removal of methyl violet (MV) and methylene blue (MB) from aqueous solutions. The rate of adsorption was investigated under various parameters such as contact time, stirring speed, ionic strength, pH and temperature for the removal of these dyes. Kinetic study showed that the adsorption of dyes on sepiolite was a gradual process. Quasi-equilibrium reached within 3 h. Adsorption rate increased with the increase in ionic strength, pH and temperature. Pseudo-first-order, the Elvoich equation, pseudo-second-order, mass transfer and intra-particle diffusion models were used to fit the experimental data. The sorption kinetics of MV and MB onto sepiolite was described by the pseudo-second-order kinetic equation. Intra-particle diffusion process was identified as the main mechanism controlling the rate of the dye sorption. The diffusion coefficient, D, was found to increase when the ionic strength, pH and temperature were raised. Thermodynamic activation parameters such as ΔG1, ΔS1 and ΔH1 were also calculated.  相似文献   

10.
This study examines the adsorption behavior of methylene blue (MB) from aqueous solutions onto chemically activated halloysite nanotubes. Adsorption of MB depends greatly on the adsorbent dose, pH, initial concentration, temperature and contact time. The Langmuir and Freundlich models were applied to describe the equilibrium isotherms and the Langmuir model agrees very well with experimental data. The maximum adsorption capacities for MB ranged from 91.32 to 103.63 mg·g−1 between 298 and 318 K. A comparison of kinetic models applied to the adsorption data was evaluated for pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion equation. The results showed the adsorption process was well described by the pseudo-second-order and intra-particle diffusion mode. Thermodynamic parameters suggest that the adsorption is spontaneous and endothermic. The obtained results indicated that the product had the potential to be utilized as low-cost and effective alternative for dye removal in wastewater.  相似文献   

11.
《分离科学与技术》2012,47(10):1463-1470
The present study deals with the removal of phosphates from aqueous solution using activated carbon developed from coir pith. Batch adsorption experiments were performed to delineate the effect of initial pH, contact time, adsorbent dose and temperature on the removal of phosphates by coir-pith activated carbon (CAC) (activated by H2SO4). The removal was found to be maximum in the pH range of 6–10. The kinetics of adsorption showed that the phosphate adsorption onto CAC was a gradual process with a quasi-equilibrium being attained in 3 h. The adsorption equilibrium data followed the Temkin isotherm. Thermodynamic parameters such as ΔG o , ΔH o , and ΔS o were evaluated by applying the Arrhenius and van't Hoff equations, and it was found that the adsorption of phosphate on CAC was spontaneous and endothermic.  相似文献   

12.
Chitosan/poly(amidoamine) (MCS/PAMAM) microparticles were prepared as magnetic adsorbents for removal of Reactive Blue 21 (RB 21) dye from aqueous solution. Characterization of these particles was carried out using scanning electron microscopy, Fourier transform-infrared spectroscopy, X-ray diffractometry and vibrating sample magnetometry. The results indicate that the magnetic chitosan microparticles (MCS) were functionalized with PAMAM dendrimers and maintained its intrinsic magnetic properties. The effects of initial pH, adsorbent dose, initial concentration, contact time and temperature on adsorption were investigated. Kinetic studies showed that the dye adsorption process followed a pseudo-second-order kinetic model but that the adsorption rate was also influenced by intraparticle diffusion. Equilibrium adsorption isotherm data indicated a good fit to the Langmuir isotherm. The maximum adsorption capacities obtained from the Langmuir model were 555.56, 588.24, 625.00 and 666.67 mg g−1 at 303, 313, 323 and 333 K, respectively. The thermodynamic parameters revealed the feasibility, spontaneity and endothermic nature of the adsorption. Recycling experiments confirmed the relative reusability of the adsorbent.  相似文献   

13.
Montmorillonite KSF and K10 were used as precursor materials for synthesis of aluminum pillared K10 and KSF (Al-K10 and Al-KSF) which characterized by TGA, XRD, SEM and FT-IR spectroscopic analysis. The sorption of trimethoprim (TMP) which is commonly employed as an antibiotic onto Al-K10 and Al-KSF was also investigated as a function of adsorbent dosage, solution pH, contact time and temperature. The adsorption kinetics was interpreted using pseudo-first-order, pseudo-second-order kinetic models and intraparticle diffusion model. The pseudo-second-order model provided the best correlation. Adsorption isotherm parameters were obtained from Freundlich, Langmuir and Dubinin–Radushkevich (DR) isotherm models. Adsorption of TMP onto Al-K10 and Al-KSF was physical in nature and ion-exchange mechanism for DR equation, respectively. Al-K10 exhibits higher removal capacity at lower adsorbent dosages in comparison with Al-KSF. The removal capacity was increased by increasing pH. ΔH0, ΔS0 and ΔG0 showed that adsorption of trimethoprim was endothermic, increasing randomness and not spontaneous in nature.  相似文献   

14.
《分离科学与技术》2012,47(13):1898-1905
Batch adsorption studies were carried out using H2SO4 modified sugarcane bagasse (HMSB) for the removal of hazardous Crystal Violet (CV) dye from aqueous solutions. The effects of initial solution pH, adsorbent dose, and temperature on the adsorption process were investigated. The Langmuir isotherm model well described the equilibrium dye uptake while the pseudo-second-order kinetic model showed good agreement with the experimental kinetic data. Gibb's free energy change (ΔG0) was spontaneous for all interactions, and the adsorption process exhibited endothermic enthalpy values. Results suggest that HMSB is an effective adsorbent for the removal of CV from wastewater.  相似文献   

15.
The feasibility of using tea waste (TW) as a low-cost adsorbent for the adsorption of an anionic dye (Congo red) from aqueous solution has been investigated. Adsorption in a batch process was conducted to study the effect of adsorbent dosage, initial dye concentration, contact time, pH, and temperature. The experimental data were analyzed by the Langmuir, Freundlich, and Temkin models. The adsorption system was best described by the Langmuir isotherm (R 2 > 0.99). Adsorption kinetics followed a pseudo-second-order model (R 2 > 0.99). The effect of mechanical treatment (vibratory mill) was also studied. The experimental results showed that using this physical treatment leads to an increase in the adsorption capacity of TW from 32.26 to 43.48 mg/g. Thermodynamic analyses revealed that the adsorption of Congo red on TW was endothermic and spontaneous in nature. The results indicated that TW can be employed as a potential low-cost adsorbent for the removal of Congo red from aqueous solution.  相似文献   

16.
In the present work removal of an azo dye (Reactive Black 5) was investigated from aqueous solution by adsorption onto scallop as a low-cost and widely available adsorbent. The effect of various operational parameters, such as contact time, pH, initial dye concentration and adsorbent dosage on the removal efficiency of dye was studied. Removal efficiency declined with the increase in solution pH and initial dye concentration but with the decrease in adsorbent dosage. Experimental equilibrium and kinetics data were fitted by Langmuir and Freundlich isotherms and pseudo-first-order and pseudo-second-order kinetic models, respectively.  相似文献   

17.
The aim of this study is to utilise nutshell, which is normally a waste. To this end, in the first part of our study we investigated the usability of nutshell extract solution as a natural dye for the coloration of cotton and wool fabrics. In order to optimise the fastness properties of dyed samples, mordant type was chosen as a variable in experiments and dyeings were carried out at 100 g l−1 extract concentration. After extracting its dye, nutshell was used as adsorbent for colour removal of basic dye effluent. The effect of adsorbent dose, initial dye concentration, and contact time on the adsorption of malachite green (MG) onto nutshell was investigated. Adsorption isotherms and kinetics of MG adsorption onto nutshell were also studied.  相似文献   

18.
Synthetic dyes are widely used by several industries to color their products. The discharge of colored wastewater into the hydrosphere causes serious environmental problems. We used functionalized multi wall carbon nanotubes as an adsorbent for the adsorption of cationic dye, malachite green, from aqueous solution. Based on information provided by the Iranian Research Institute of Petroleum Industry, carbon nanotubes are produced using a chemical vapor deposition (CVD) technique. These as-received MWCNTs were functionalized by acid treatment. The remaining dye concentration was read by UV-visible absorption spectroscopy at maximum adsorption wavelength. The effect of different operational parameters such as contact time, pH of solution, adsorbent dose and initial dye concentration were studied. The results showed that by increasing of contact time, pH and adsorbent dose the removal of dye increased, but by increasing initial dye concentration, the removal efficiency decreased. Adsorption isotherms and kinetics behavior of f-MWCNTs for removal of malachite green was analyzed, and fitted to various existing models. The experimental data were well correlated with the Langmuir isotherm with a maximum adsorption capacity (q m ) and regression coefficient (R2) of 142.85 mg/g and 0.997, respectively. The results of this study indicate that functionalized multi wall carbon nanotubes can be used as an effective adsorbent for the removal of dyes.  相似文献   

19.
N-succinyl-chitosan-g-polyacrylamide/attapulgite (NSC-g-PAM/APT) composite was applied as adsorbent for the removal of methylene blue (MB) from aqueous solution. The initial pH value of the dye solutions, the contact temperature, the contact time and the concentration of the dye solutions on adsorption capacity of the composite for MB dye were investigated. The adsorption kinetics and isotherms were also studied. It was shown that all the sorption processes were better fitted by pseudo-second-order equation and the Langmuir equation. The results indicated that the adsorption capacity of the composite was higher than those of chitosan (CTS) and attapulgite (APT). The desorption studies revealed that the composite provided the potential for regeneration and reuse after MB dye adsorption, which implied that the composite could be used as quite effective adsorbent for the removal of MB from aqueous solution.  相似文献   

20.
《分离科学与技术》2012,47(17):2689-2699
Cinnamomum camphora sawdust (CCS) was employed as a cheap and effective biosorbent to remove basic dye from aqueous solutions. The biosorbent was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Adsorption experiments were carried out in a batch system as a function of initial pH, adsorbent dose and particle size, ionic strength, initial dye concentration, and reaction temperature. The selected basic dye (malachite green) adsorption onto CCS significantly depended on these factors. By comparative kinetic analysis, the rate of sorption was conformed with good correlation to pseudo-second-order kinetics. Equilibrium data were fitted well by Langmuir isotherm with the maximum adsorption capacity of 155.0 mg/g at the temperature of 318 K and pH 7.0 ± 0.1. Thermodynamic parameters proved that malachite green dye biosorption process was spontaneous and endothermic within the investigated temperature range. The mechanism of adsorption was also studied. It was found that the adsorption of malachite green onto CCS was mainly governed by film diffusion. The electrostatic attractions and ionic interactions between malachite green dye and CCS might be responsible for the adsorption process. The comparative investigation suggested that the sawdust could be considered as a potential adsorbent for malachite green dye removal from wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号