首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper investigates the effect of two variables, namely direction of parameterization and cutter diameter on process geometry, cutting forces, and surface error in peripheral milling of curved geometries. In machining of curved geometries where the curvature varies continuously along tool path, the process geometry variables, namely feed per tooth, engagement angle, and maximum undeformed chip thickness too vary along tool path. These variations will be different when a given geometry is machined from different parametric directions and with different cutter diameters. This difference in process geometry variations result in changed cutting forces and surface error along machined path. This aspect has been studied for variable curvature geometries by machining from both parametric directions and using cutters of different diameter. The computer simulation studies carried out show considerable amount of shift in the location of peak cutting forces with the change in cutting direction and cutter diameter, particularly in concave regions of workpiece geometry. A new parameter γ that relates the instantaneous curvature of workpiece with cutter radius is defined. The larger value of γ is an indicator of greater shift in the location of peak forces from the point of maximum curvature on the workpiece. The simulation results are validated by carrying out machining experiments with curved workpiece geometry and are found to be in good agreement.  相似文献   

2.
Tool deflection compensation in peripheral milling of curved geometries   总被引:4,自引:0,他引:4  
This paper presents compensation of surface error due to cutting force-induced tool deflections in a peripheral milling process. Previous research attempts on this topic deal with error compensation in machining of straight geometries only. This paper is concerned with peripheral milling of variable curvature geometries where the workpiece curvature changes continuously along the path of cut. In the case of curved geometries, both process geometry and the cutting forces have shown to have strong dependence on workpiece curvature and hence variation of surface error along the path of cut. This calls for a different error compensation strategy than the one which is normally used for machining straight geometries. The present work is an attempt to improve accuracy in machining of curved geometries by use of CNC tool path compensation. Mechanistic model for cutting force estimation and cantilever beam model for cutter deflection estimation are used. The results based on machining experiments performed on a variety of geometries show that the dimensional accuracy can be improved significantly in peripheral milling of curved geometries.  相似文献   

3.
This paper presents a novel method for cutting force modeling related to peripheral milling of curved surfaces including the effect of cutter runout, which often changes the rotation radii of cutting points. Emphasis is put on how to efficiently incorporate the continuously changing workpiece geometry along the tool path into the calculation procedure of tool position, feed direction, instantaneous uncut chip thickness (IUCT) and entry/exit angles, which are required in the calculation of cutting force. Mathematical models are derived in detail to calculate these process parameters in occurrence of cutter runout. On the basis of developed models, some key techniques related to the prediction of the instantaneous cutting forces in peripheral milling of curved surfaces are suggested together with a whole simulation procedure. Experiments are performed to verify the predicted cutting forces; meanwhile, the efficiency of the proposed method is highlighted by a comparative study of the existing method taken from the literature.  相似文献   

4.
The paper presents modelling of tooth trajectory and process geometry in peripheral milling of curved surfaces. The paper differs from previous work in this area, in two respects. Firstly it deals with milling of variable curvature geometries unlike zero and constant curvature geometries dealt in the past. Secondly true tooth trajectories are considered for modelling process geometry in milling of curved surfaces instead of simpler circular tooth trajectories. Mathematical expressions for, feed per tooth along cutter contact path, entry and exits angles of tooth, undeformed chip thickness and surface error are derived and effect of workpiece curvature on these variables is studied. As cutting forces depend on these process variables, physical experiments were also performed to study the effect of workpiece curvature on cutting forces. Process simulation experiments carried out show the need for modelling true tooth trajectories instead of circular tooth trajectories particularly for curved geometries. Results also show that using simpler constant curvature models to variable curvature geometries for the purpose of estimation of process geometry variables could be erroneous.  相似文献   

5.
The accurate and fast prediction of cutting forces in five-axis milling of free-form surfaces remains a challenge due to difficulties in determining the varying cutter-workpiece engagement (CWE) boundaries and the instantaneous uncut chip thickness (IUCT) along the tool path. This paper proposes an approach to predict the cutting forces in five-axis milling process with a general end mill considering the cutter runout effect that is inevitable in the practical machining operations. Based on the analytical model of cutting edge combined with runout parameters, the expression of the rotary surface formed by each cutting edge undergoing general spatial motion is firstly derived. Then by extracting the feasible contact arc along the tool axis, a new arc-surface intersection method is developed to determine the CWE boundaries fast and precisely. Next, the circular tooth trajectory (CTT) model is developed for the calculation of the IUCT with a slight sacrifice of accuracy. In comparison with the true IUCT calculated by the trochoidal tooth trajectory model, the approximation error introduced by the circular assumption is negligible while the computational efficiency improves a lot. Finally, combining with the calibrated cutting coefficients and runout parameters, comprehensive formulation of the cutting force system is set up. Simulations and experimental validations of a five-axis flank milling process show that the novel CTT model possesses obvious advantages in computing efficiency and accuracy over the existing approaches. Rough machining of a turbo impeller is further carried out to test the practicability and effectiveness of the proposed mechanistic model.  相似文献   

6.
Error compensation in flexible end milling of tubular geometries   总被引:2,自引:0,他引:2  
There are many machining situations where slender tools are used to machine thin walled tubular workpieces. Such instances are more common in machining of aircraft structural parts. In these cases, cutting force induced tool as well as workpiece deflections are quite common which result into surface error on machined components. This paper presents a methodology to compensate such tool and workpiece induced surface errors in machining of thin walled geometries by modifying tool paths. The accuracy with which deflections can be predicted strongly depends on correctness of the cutting force model used. Traditionally employed mechanistic cutting force models overestimate tool and workpiece deflections in this case as the change of process geometry due to deflections is not accounted in modeling. Therefore, a cutting force model accounting for change in process geometry due to static deflections of tool and workpiece is adopted in this work. Such a force model is used in predicting tool and workpiece deflection induced surface errors on machined components and then compensating the same by modifying tool path. The paper also studies effectiveness of error compensation scheme for both synclastic and anti-clastic configurations of tubular geometries.  相似文献   

7.
Cutter deflections induce significant amount of surface error on machined components and it is one of the major obstacles towards achieving higher productivity in peripheral milling operation. These surface errors do not take one particular form and their shape and profile measured along axial direction, varies significantly with cutting conditions. The understanding and characterization of all possible surface error types is of immense value to process planners as it forms a basis for controlling and compensating them. This paper presents a methodology to classify surface error profiles and to relate the same with cutting conditions in terms of axial and radial engagement between cutter and workpiece. The proposed characterization scheme has been validated using computational studies and machining experiments. The importance of proposed characterization is further demonstrated in understanding peripheral milling of curved geometries where workpiece curvature influences radial engagement of the cutter that often changes surface error shape both qualitatively and quantitatively. Computational and experimental studies undertaken to study machining of curved geometries underline the importance of proposed characterization scheme in identifying correct cutting conditions for a given machining situation.  相似文献   

8.
This paper is concerned with the combined cutting effects of both flank and bottom edges based on a systematic study of the cutting force in flat end milling of the titanium alloy. Besides the flank edge, the bottom edge of the cutter is also found to be an important factor influencing the cutting force distributions and can lead to uniform phase widths for non-zero cutting forces even under considerable cutter runout. One such phenomenon of uniform phase width induced by the bottom edge for the cutting force is deeply revealed. To do this, the models for characterizing the cutting force coefficients related to both edges are established based on the measured instantaneous cutting forces, and cutter runout is considered in the computation of process geometry parameters such as cutter/workpiece engagements and instantaneous uncut chip geometry parameters. Novel algorithms for identifying the cutter runout parameters and the bottom uncut chip width are also developed. Results definitely show that the flank cutting force coefficients can be treated as constants and that size effect obviously exists in the bottom cutting force coefficients that can be characterized by a power function of the bottom uncut chip width.The proposed model is validated through a comparative study with the existing model and experiments. From the outcomes of the current work, it is clearly seen that the prediction of cutting forces for titanium alloy can resort to the proposed model instead of traditional ones.  相似文献   

9.
A new mechanistic model is presented for the prediction of a cutting force system in ball-end milling of sculpture surfaces. The model has the ability to calculate the workpiece/cutter intersection domain automatically for a given cutter location (CL) file, cutter and workpiece geometries. Furthermore, an analytical approach is used to determine the instantaneous chip load (with and without runout) and cutting forces. In addition to predicting the cutting forces, the model also employs a Boolean approach for a given cutter, workpiece geometries, and CL file to determine the surface topography and scallop height variations along the workpiece surface which can be visualized in 3-D. The results of model validation experiments on machining Ti-6A1-4V are also reported. Comparisons of the predicted and measured forces as well as surface topography show good agreement.  相似文献   

10.
针对螺旋锥齿轮在数控加工中心上加工效率低的问题,提出利用盘状铣刀对螺旋锥齿轮进行端铣的加工方法.由螺旋锥齿轮齿面及刀具的几何特征,调整铣刀与被加工齿面的相对位置,使齿面与刀具包络面的法截面相对法曲率最小,增大切削带宽,同时控制刀轴矢量调整切削深度避免加工干涉.最后将规划的加工刀位转化到数控机床轴上,利用VERICUT进行加工仿真验证该方法的可行性与正确性.  相似文献   

11.
In this paper, a patch division milling technique that can generate a geometric surface pattern by means of a ball-end mill on a surface is proposed. The finished surface is divided into many same-size small patch segments such as triangles, quadrilaterals, or hexagons. The whole inside area of each patch is machined along a helical tool path with a high feed rate. A geometric surface pattern is generated by the cutting edges of the ball-end mill within the patch area, and after the machining of a series of patches, the machined surface is covered with many patches. It is shown that the aligned state of the cutter marks array on the patch can be controlled by the cross-feed, the feed speed per tooth, the number of teeth and the side length of the patch. A simulator was also developed to predict the aligned state of the cutter marks array in the patch. Comparing the machining on the patch division milling between an inclined flat surface and a cylindrical surface, the regularly aligned surface pattern and cutter marks array were found to agree well with the simulation results. The objective of this research is to establish the cutting method of generating regularly aligned surface pattern on the complex-shaped workpiece efficiently. If the surface pattern on the complex-shaped workpiece could be formed only by the ball-end milling with a machining center, it will be a very effective tool for the machinery industry.  相似文献   

12.
The objective of manufacturing technology, to reduce machining costs, increase product quality and optimize process setups, is only achievable by considering the entire manufacturing process and its interrelations. Especially in tool grinding, strong interactions exist between workpiece dynamics, grinding wheel engagement, structure deformations and cutting process conditions, which makes an integrated model necessary. This paper introduces a tool grinding model that combines time-dependent dynamical aspects of the grinding wheel and workpiece with local varying contact conditions to predict the final workpiece geometry and cutting forces with a high resolution in space and time. The model is capable to reproduce systemic effects on cutting forces and ground geometries which only occurs in the interplay of all system components. The model is also positively tested in representing influences of process parameters and in optimizing the machining. The excellent agreement of simulations and experimental data shows the model’s potential in manufacturing technology, but also in investigating grinding aspects, which are not fully understood yet.  相似文献   

13.
Producing an accurate part mainly depends on the position and orientation of the cutting tool with respect to the workpiece which is mainly influenced by the rigid body motion of the workpiece and the elastic deformation of workpiece-fixture-cutter system. For the purpose of minimizing the machining error, a new modification strategy of the nominal tool path is not that directly compensate the control commands of the machine tools, but that modify the cutter location source file (CLSF) from the computer aided manufacturing (CAM) system by means of the proposed modification model on the basis of the prediction deviation, namely, the deviation of the cutting tool relative to the workpiece in computer numerical control (CNC) machining operation. Therefore, it is not only simpler, but also easier implemented by common manufacturing engineer. The effectiveness of the proposed strategy is verified by a machining example.  相似文献   

14.
A new approach to theoretical modelling and simulation of cutting forces in face milling is presented. Based on a predictive machining theory, the action of a milling cutter is modeled as the simultaneous actions of a number of single-point cutting tools. The milling forces are predicted from the workpiece material properties, cutter parameters, tooth geometry, cutting conditions and types of milling. The properties of the workpiece material are considered as functions of strain, strain-rate and temperature in the cutting region. It takes into account the effect of the intermittent contact between each milling tooth and the workpiece on the temperature in the cutting region. It also takes into account the effect of cutter runout on the undeformed chip thickness. Milling experiments have been conducted to verify the proposed model. Good agreements between the experimental and simulated results are presented.  相似文献   

15.
为了解决数控刻楦中刀轴矢量方向相对鞋楦表面法向频繁变换而造成冲击或发生干涉等问题,提出一种刀轴矢量平滑化插值方法。在确定刀触点的情况下,根据鞋楦表面的微分几何性质确定刀轴矢量方向。采用空间矢量光滑插值方法获得一系列中间位置刀轴矢量使刀轴变化较均匀:根据鞋楦误差要求,采用几何变换方法分析切削工步的起始和结束刀触点处的刀轴矢量变化状况。据此估计刻楦误差。以某规格鞋楦数控刻制过程为例对刀轴矢量光顺化方法进行仿真。结果表明,该方法可以避免刀轴方向频繁变换,并有效地提高加工精度。  相似文献   

16.
球头铣刀铣削斜面的三维有限元仿真研究   总被引:1,自引:1,他引:0  
在能源动力、汽车、航空航天、模具制造等关键零部件的加工过程中,球头铣刀因其特有的刀具几何结构,常作为零件加工的最终成型刀具。考虑到在球头铣刀立铣加工中不同的刀具与工件相对姿态会对切削过程产生不同的影响,本文研究切屑形成和不同走刀方式下切削过程中各物理量(切削力、切削温度等)的变化情况,结合有限元仿真技术在切削加工中的应用,建立硬质合金球头铣刀铣削斜面的有限元模型,模拟相同切削参数下,八种不同走刀方式的球头铣削过程,分析刀具切入切出工件时切屑的形成过程,探究切削力和切削温度的变化规律。仿真结果表明:不同的走刀方式,平均切削合力各不相同,同时切屑和工件的最大切削温度也出现较大差异,而斜坡上坡逆铣的走刀方式所对应的平均切削合力和最大切削温度均最优。  相似文献   

17.
This paper presents a model for the prediction of cutting forces in the ball-end milling process. The steps used in developing the force model are based on the mechanistic principles of metal cutting. The cutting forces are calculated on the basis of the engaged cut geometry, the underformed chip thickness distribution along the cutting edges, and the empirical relationships that relate the cutting forces to the undeformed chip geometry. A simplified cutter runout model, which characterizes the effect of cutter axis offset and tilt on the undeformed chip geometry, has been formulated. A model building procedure based on experimentally measured average forces and the associated runout data is developed to identify the numerical values of the empirical model parameters for the particular workpiece/cutter combination.  相似文献   

18.
Deviation of a machined surface in flank milling   总被引:4,自引:0,他引:4  
The flatness defects observed in flank milling with cutters of long series are mainly due to the tool deflections during the machining process. This article present the results of an identification procedure of the coefficients of a force model for a given tool workpiece couple for the prediction of the defects of the tool during the cutting. The calibration method proposed meets a double aim: to define an experimental protocol that takes the industrial constraints of time and cost into account and to work out a protocol which minimizes uncertainties likely to alter the interpretation of the results (environmental, software or mechanical uncertainties). For that, the procedure envisages the machining of a simple plane starting from a raw part formed by a tilted plane, allowing for the variation of the tool engagement conditions. The tool deviation during the cutting process is indirectly identified by measuring the machined surface. The observed straightness defect conditions can be explained by the evolution of the cutting pressures applied to the cutting edges in catch during the cutter rotation. The precision was considerably improved by the taking into account of the cutter slope defect in the calculation of the load applied to the tool. After identification of the tool-workpiece couple, the prediction model was applied to some examples and allowed to determine the variations of form and position of the surface points with a margin of 5%.  相似文献   

19.
Sculptured surface machining is a time-consuming and costly process. It requires simultaneously controlled motion of the machine axes. However, positioning inaccuracies or errors exist in machine tools. The combination of error motions of the machine axes will result in a complicated pattern of part geometry errors. In order to quantitatively predict these part geometry errors, a new application framework ‘enhanced virtual machining’ is developed. It integrates machine tool error models into NC machining simulation. The ideal cutter path in the NC program for surface machining is discretized into sub-paths. For each interpolated cutter location, the machine geometric errors are predicted from the machine tool error model. Both the solid modeling approach and the surface modeling approach are used to translate machine geometric errors into part geometry errors for sculptured surface machining. The solid modeling approach obtains the final part geometry by subtracting the tool swept volume from the stock geometric model. The surface modeling approach approximates the actual cutter contact points by calculating the cutting tool motion and geometry. The simulation results show that the machine tool error model can be effectively integrated into sculptured surface machining to predict part geometry errors before the real cutting begins.  相似文献   

20.
This article presents a mathematical model and a computational algorithm for the time domain solution of boring process dynamics. The model is developed in a modular form; it includes a workpiece geometry and surface topography module, a kinamatics and tool position module, a dynamic chip load module, a dynamic cutting force prediction module and a structural dynamics module. The time domain model takes cutting process parameters, tool and workpiece geometries and modal parameters of the structure as inputs. It predicts instantanous cutting forces and vibrations along the machining time, and machined workpiece topography as outputs. Some of the simulated and experimental results for various cutting conditions are presented and compared for validation purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号