首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
An experimental investigation of the heat transfer and pressure drop performance of ten finned tube bundles using serrated fins is presented. All tube bundles had staggered layouts, and the influence on varying tube bundle layout, tube and fin parameters are presented. The heat transfer coefficient experienced a maximum when the flow areas in the transversal and diagonal planes were equal. An increase in the fin pitch increased the heat transfer coefficient; the same was observed with an increase in fin height. The pressure drop coefficient showed no influence of the tube bundle layout for small pitch ratios, but dropped significantly for higher ratios. Increasing fin pitch reduced the pressure drop, whereas varying fin height had insignificant effect. None of the literature correlations were able to reproduce the experiments for the entire range of tested conditions. A set of correlations were developed, reproducing the experimental data to within ±5% at a confidence interval of 95%.  相似文献   

2.
In order to elucidate boiling heat transfer characteristics for each tube and the critical heat flux (CHF) for tube bundles, an experimental investigation of pool and flow boiling of Freon-113 at 0.1 MPa was performed using two typical tube arrangements. A total of fifty heating tubes of 14 mm diameter, equipped with thermocouples and cartridge heaters, were arrayed at pitches of 18.2 and 21.0 mm to simulate both square in-line and equilateral staggered bundles. For the flow boiling tests the same bundles as were used in pool boiling were installed in a vertical rectangular channel, to which the fluid was supplied with an approach velocity varying from 0.022 to 0.22 m/s. It was found in this study that the boiling heat transfer coefficient of each tube in a bundle was higher than that for an isolated single tube in pool boiling. This enhancement increases for tubes at higher locations, but decreases as heat flux is increased. At heat fluxes exceeding certain values, the heat transfer coefficient becomes the same as that for an isolated tube. As the heat flux approaches the CHF, flow pulsations occurred in the pool boiling experiments although the heat transfer coefficient was invariant even under this situation. The approach velocity has an appreciable effect on heat transfer up to a certain level of heat flux. In this range of heat flux, the heat transfer coefficient exceeds the values observed for pool boiling. An additive method with two contributions, i.e., single phase convection and boiling, was used to predict the heat transfer coefficient for bundles. The predicted results showed reasonable agreement with the measured results. The critical heat flux in tube bundles tended to increase as more bubbles were rising through the tube clearance. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(4): 312–325, 1998  相似文献   

3.
An experimental investigation has been carried out to study the heat transfer and pressure drop characteristics of nanofluid flow inside horizontal flattened tubes under constant heat flux. The nanofluid is prepared by dispersion of CuO nanoparticle in base oil and stabilized by means of an ultrasonic device. Nanofluids with different particle weight concentrations of 0.2%, 0.5%, 1% and 2% are used. Copper tubes of 11.5 mm I.D. are flattened into oblong shapes and used as test sections. The nanofluid flowing inside the tube is heated by an electrical heating coil wrapped around it. Required data are acquired for laminar and hydrodynamically fully developed flow inside round and flattened tubes.The effect of different parameters such as flow Reynolds number, flattened tube internal height and nanofluid particle concentration on heat transfer coefficient and pressure drop of the flow is studied. Observations show that the heat transfer performance is improved as the tube profile is flattened. Flattening the tube profile resulted in pressure drop increasing. In addition, the heat transfer coefficient as well as pressure drop is increased by using nanofluid instead of base fluid. Furthermore, the performance evaluation of the two enhanced heat transfer techniques studied in this investigation shows that applying flattened tubes instead of the round tube is a more effective way to enhance the convective heat transfer coefficient compared to the second method which is using nanofluids instead of the base liquid.  相似文献   

4.
采用有限元数值方法,使用ANSYS有限元软件,对不同流动形式和不同结构的椭圆管束进行了数值研究,得到了不同流速下的流动特性,通过速度分布的等值云图实现了流场的可视化,并与顺排和又排圆管管束进行了比较,对椭圆管束的对流换热状况有了掌握。计算结论表明,只要合理设计椭圆管的长短轴比,就可达到在增大对流换热强度的同时大大降低流动阻力之目的。研究加深了对椭圆管束流动特性的认识,并体现出采用方法对于椭圆管束流动特性的研究非常有效。  相似文献   

5.
对不同翅片间距Sf、管束横向节距St和管束纵向节距Sl的9组螺旋翅片管束的换热和流动过程进行了试验研究.分析了换热过程的熵产,研究了雷诺数(RP)、翅片间距、管束横向节距和管束纵向节距对管束换热熵产数NsH、流动熵产数NsF和总熵产数Ns的影响.结果表明:对不同布置方式的管束,随着Re的增加,NsH迅速减小,NsF逐渐增加,Ns先减小后增加;翅片间距对NsH影响较小,在高Re下,翅片间距增大时,NsF和Ns均明显降低;横向节距对NsH几乎没影响,但随着横向节距的增加,NsF和Ns均明显降低;管束纵向节距对NsH、NsF和Ns的影响都很小.  相似文献   

6.
A total of 23 cross-flow heat exchangers having crimped spiral configurations is studied. The effect of tube diameter, fin spacing, transverse tube pitch, and tube arrangements are examined. For the inline arrangement, the pressure drop increases with the rise of tube diameter but the associated heat transfer coefficient decreases with it. The increase of fin height also gives rise to considerable increase of pressure drop and decrease of heat transfer coefficients for the inline arrangement. However, for the staggered arrangement, the effect of the fin height on the pressure drop is much smaller than that of the inline arrangement due to the major contribution to the total pressure drops from the blockage of the airflow from staggered arrangement. Effect of the fin spacing on the air side performance is strongly related to the transverse tube pitch for both inline and staggered arrangements. Correlations of the present crimped spiral fins in both staggered and inline arrangements are developed. The proposed correlations give fairly good predictive ability against the present test data.  相似文献   

7.
Shell and tube heat exchanger with single twisted tube bundle in five different twist angles, are studied using computational fluid dynamics (CFD) and compared to the conventional shell and tube heat exchanger with single segmental baffles. Effect of shell-side nozzles configurations on heat exchanger performance is studied as well. Heat transfer rate and pressure drop are the main issues investigated in the paper. The results show that, for the same shell-side flow rate, the heat transfer coefficient of heat exchanger with twisted tube bundle is lower than that of the heat exchanger with segmental baffles while shell-side pressure drop of the former is even much lower than that of the latter. The comparison of heat transfer rate per unit pressure drop versus shell-side mass flow rate shows that heat exchanger with twisted tube bundle in both cases of perpendicular and tangential shell-side nozzles, has significant performance advantages over the segmental baffled heat exchanger. Optimum bundle twist angles for such exchangers are found to be 65 and 55° for all shell side flow rates.  相似文献   

8.
En Tian  Ya-Ling He 《传热工程》2018,39(13-14):1166-1178
In this paper, a comprehensive thermo-hydraulic performance evaluation for air flow across the hexagon-like and circular-like staggered pin finned tube bundle heat transfer surfaces has been numerically carried out by adopting the performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving. In addition, the simulation results have also been analyzed from the viewpoints of field synergy principle and entransy dissipation extreme principle. The results indicate that the heat transfers are all enhanced based on identical pressure drop for the hexagon-like and circular-like pin finned tube bundles within the inlet velocity range from 1 m/s to 10 m/s studied. Moreover, the circular-like pin finned tube bundle offers the lowest friction factor increase ratio for the same Nusselt number increase ratio. Furthermore, the synergy between velocity and fluid temperature gradient has been proved again, having inherent consistency with the dissipation of entransy.  相似文献   

9.
本研究基于VOF算法编写用户UDF(自定义函数),采用FLUENT软件建立了椭圆横管外降膜流动和换热的计算模型。根据CFD(计算流体力学)模型计算和分析了在不同长短轴比下管外降膜速度分布、压力分布、液膜内温度分布和管外换热分布的变化规律。研究结果表明:长短轴比的变化影响了管外液膜速度分布、压力分布和膜内温度分布;相比圆管,椭圆管的管外膜内液体流速更快。壁面压力沿周向逐渐减少并在X=0.9附近快速回升;随长短轴比e的增加,周向压力最小值位置逐渐向后推移。局部Nu数分布与压力分布在趋势上存在一致性。当e=1.65附近时,椭圆的换热性能最优;最后,通过对管形的研究分析,提出横管的传热分区模型。  相似文献   

10.
三叶膨胀管是一种新型强化传热管,针对纵向流换热器特点,设计了三种不同管束结构参数的三叶膨胀管自支撑纵向流换热器。应用FLUENT软件及Realizable k-ε湍流模型,对三种不同结构参数的三叶膨胀管换热器壳程强化传热特性展开了数值模拟,并通过与实验数据的对比,验证了计算模型的可靠性。计算了不同壳程介质流速下,三叶膨胀管换热器壳程的换热系数与压降值,并获得了壳程流体流线以及相应的温度场、速度场和二次流分布图。结果发现,在壳程水流速一致的情况下,管束横向间距越大的三叶膨胀管换热器,壳程拥有更高的综合换热性能和更低的压降值,但相应地,换热系数也更低。流场分析显示,壳程流体流线呈现出三维纵向旋流形态,二次流的出现改变了速度场和温度场分布,二次流的强度随着管束横向间距的减小而增大。  相似文献   

11.
椭圆翅片管空冷器流动传热特性的研究   总被引:23,自引:0,他引:23       下载免费PDF全文
用稳态的恒壁温法对3个椭圆翅片管空冷器和1个圆翅片管空冷器的传热和阻力特性进行了研究,得到空冷器空气侧的传热与阻力性能,在相同的迎风面流速下,椭圆翅片管比圆翅片管空气侧换热系数约大3-7倍;在相同的换热系数下,椭圆翅片管比圆翅片管的压降低。  相似文献   

12.
Heat exchangers are extensively used in various industries. In this study, the impact of geometric and flow parameters on the performance of a shell and double helical coil heat exchanger is studied numerically. The investigated geometric parameters include external coil pitch, internal coil pitch, internal coil diameter, and coil diameter. The influences of considered geometrical parameters are analyzed on the output temperature of the hot and cold fluid, convective heat transfer coefficient, pressure drop, and average Nusselt number. Water is considered as working fluid in both shell and tube. As an innovation, double helical coils are used instead of one in the heat exchanger. To compare the obtained results accurately, in each section, the heat transfer area (coil outer surface) is kept constant in all models. The results show that the geometrical parameters of double helical coils significantly affect the heat transfer rate.  相似文献   

13.
An experimental investigation has been carried out to study heat transfer and pressure drop characteristics of R-134a flow boiling inside a horizontal plain tube and different flattened tubes. Round copper tubes with an inner diameter of 8.7 mm were flattened into an oblong shape with an internal height of 6.6 mm, 5.5 mm, 3.8 mm, and 2.8 mm. The test apparatus was basically a vapor compression refrigeration system equipped with all necessary measuring instruments. Analysis of the collected data showed that, by flattening the round tube, the heat transfer coefficient and pressure drop increased simultaneously. The performance of these tubes from the point of view of heat transfer enhancement and pressure drop increasing were evaluated. It was concluded that, the tube with an internal height of 5.5 mm has the best performance compared with the other flattened tubes. Finally, based on the present experimental pressure drop data, a correlation was developed to estimate the pressure drop in flattened tubes. This correlation predicts the experimental data of the present study within an error band of ± 20%.  相似文献   

14.
《传热工程》2012,33(9):828-834
Experiments were conducted for pool boiling on the outside of 8 × 3 (eight rows and three columns) plain and coated tube (surface roughness = 8.279 μm) bundles for three different pitch distances with the distinct objective to study the behavior and the enhancement of boiling heat transfer in horizontal staggered tube bundles (of plain and coated tubes for different equilateral triangular arrangements) with heat flux values ranging from ~12 to 45 kW/m2. At higher heat fluxes, coated and plain tube bundles had almost similar bundle average heat transfer coefficients at a given pitch distance, while at lower heat fluxes, the coated tube bundles have higher bundle average heat transfer coefficients as compared to that of the plain tube bundle. The coated tube bundles with the minimum pitch to diameter ratio of 1.4 exhibited the maximum bundle average heat transfer coefficients. The present study concludes that the bundle factor needs to be considered in the design of flooded evaporators.  相似文献   

15.
Heat transfer coefficients and pressure drop are studied experimentally for airflow over aligned round and flattened tube configurations. The Reynolds number is based on the outer diameter of the round tube or the outside transverse diameter of the flattened tube, which is used for various flows, ranging from 133 to 800 with a constant input heat flux. In the present work, a total of 30 samples of round and flattened tubes heat exchangers with three transverse pitches, 2.0, 3.0, and 4.5, were studied to investigate their thermal performance. The results indicate that the relative gain in the overall Nusselt number is about 32.5 to 60.6% in flattened tubes, while the reduction range in the friction factor is about 11 to 30.6%. Correlations are proposed for the overall Nusselt number, friction factor, and Colburn j–factor for both round and flattened tube banks. A higher value means that a deviation error of 9.9% in the round tube banks and 10.1% in the flattened tube banks are expected. In addition, the best value for thermal performance for the flattened tube bundle was found to be coincident with a smaller Reynolds number.  相似文献   

16.
In this paper we present a modeling and parametric studies of a water-to-air heat exchanger. This exchanger is formed of a fan blowing the air to be heated through a battery of smooth tubes where the hot water—coming from solar concentrators—circulates. The heated air is injected into a thermal room to dry the clay bricks.In the first part, we study the most used models in the estimation of the heat transfer and air flow pressure drop across a tube bundle, and subsequently calculate the required transmitted power to the air.In the second part, we focus on the parametric study of the influence of the different geometric parameters of the exchanger on the heat flow rate, the air outlet temperature, the pressure drop and the requested transferred power to the air. The considered parameters are: The water heat flow rate, the heat exchanger compactness, the rows arrangement, the tube diameter, the transverse pitch, the total number of tubes, the number of rows and the air velocity.Simulations have shown that the heat exchanger performance could be improved essentially throughout the design and manufacturing process by modifying the different geometrical parameters and filling certain conditions.  相似文献   

17.
This paper shows how to predict the heat transfer and pressure drop for in-line flat tube configuration in a crossflow, using an adaptive neuro-fuzzy inference system (ANFIS). A numerical study of a 2D steady state and incompressible laminar flow for in-line flat tube configuration in a crossflow is also considered in this study. A finite volume technique and body-fitted coordinate system is used to solve the Navier–Stokes and energy equations. The Reynolds number varies from 10 to 320. Heat transfer and pressure drop results are presented for a tube configuration at transverse pitch and longitudinal pitch. The variation in velocity profile, isotherm contours and streamlines were compared for various configurations. The predicted results for average Nusselt number and dimensionless pressure show a good agreement with available previous work. The accuracy between numerical values and ANFIS model results were obtained with a mean relative error for average Nusselt number, pressure drop less than 1.9% and 2.97% respectively. Therefore, the ANFIS model is capable of predicting the performance of thermal systems in engineering applications, including the model of the tube bundle for heat transfer analysis and pressure drop.  相似文献   

18.
双排管外空气流动和传热性能的数值研究   总被引:3,自引:0,他引:3  
矩形翅片椭圆管,即双排管是直接空冷凝汽器的一种基本换热元件.研究了双排管外空气侧的流动和传热性能.在不同迎面风速下,对双排管空气侧进行了三维数值模拟,并对速度场、温度场进行了分析.拟合出双排管阻力和平均传热系数随迎面风速变化的计算公式.  相似文献   

19.
利用可视化换热器性能实验台测试了微细管束表面在无换热、大温差、凝露条件下不同风速工况的流动损失与空气侧换热系数。同时探究了超低温工况下,相对湿度和风速对微细管束换热器流动换热特性影响。相对湿度增大,湿空气释放潜热增加,结霜量增大,换热器前后压损增加。高速气流具有剪切作用,风速增大会导致结霜迟滞。  相似文献   

20.
采用CFD软件对氦气冲刷螺旋管束的传热特性进行了数值模拟。计算时采用了轴对称简化模型;湍流模拟采用低Re k-ε模型。通过与实验数据对比,发现低Re模型比壁面函数法更适合计算冲刷管束类型的流动。计算结果表明,顺排管束前几层平均Nu高于叉排管束,而深层管平均Nu低于叉排管束;管列距离较大时排列方式对深层管的传热影响很小;管束与边界距离约为管束中心部分氦气流道宽度的一半时,各列传热管传热和氦气出口温度都较为均匀;管束横向位置发生偏移将导致管束内流动、传热出现不均匀。结果对于螺旋管蒸汽发生器设计具有参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号