首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
针对光子晶体光纤之间直接熔接损耗较大的问题.文中采用纳秒激光器作为泵浦源,通过光子晶体光纤与单模光纤HI-1060低损耗熔接的方法,研究了超连续谱的展宽过程,分析了超连续谱的产生机理.实验结果表明:泵浦源在重复频率为150kHz、泵浦功率为2.2W时,利用20m的光子晶体光纤与1m的单模光纤的熔接实现了输出功率为0.48W、光谱范围超过1100nm的超连续谱输出.  相似文献   

2.
研究了纳秒脉冲在光子晶体光纤中的演化和传输.利用纳秒激光器产生脉宽为65ns、重复频率为150 kHz光脉冲,泵浦25 m的光子晶体光纤,获得了输出功率为0.76W、整个光谱范围超过1200 nm的超连续谱.在光谱展宽的初始阶段,光谱的展宽来源于调制不稳定性效应.随着泵浦功率的增加,发现四波混频效应对光谱短波部分的展宽起作用,受激拉曼散射效应对光谱长波部分的展宽起作用.  相似文献   

3.
光子晶体光纤超连续谱光源   总被引:1,自引:0,他引:1  
介绍该课题组近两年在光子晶体光纤超连续谱方面的主要研究成果,包括基于连续波泵浦研制全光纤化超连续谱源,利用级联一段高非线性正常色散光纤,通过光纤的受激拉曼散射效应实现超连续谱的平坦化;基于皮秒锁模光纤激光器实现全光纤化5 W输出超连续谱源;拉制一段145 m的锥形光子晶体光纤,利用自制的纳秒光纤激光器与锥形光子晶体光纤熔接,制备输出功率2.2 W的宽带超连续谱源;利用自制的网状光子晶体光纤和全固态光子带隙光纤,分别研究亚微米薄壁上偏振相关的超连续谱产生,以及基于四波混频效应产生的超连续谱.  相似文献   

4.
研制一种双芯光子晶体光纤,其零色散波长位于1 010 nm,在波长1 060 nm处的非线性系数为6.82 W-1·km-1.利用中心波长1 060 nm、重复频率1 MHz、脉冲宽度150 ps、最大输出功率4.5 W及光束质量M21.3的增益开关皮秒脉冲全保偏光纤激光器泵浦长度为35 m的双芯光子晶体光纤,得到谱宽为480~2 200 nm、输出功率为371.7 mW的宽带平坦全光纤化超连续谱光源.长波方向10 dB谱宽为1 140 nm(1 060~2 200 nm),短波方向3 dB谱宽为460 nm(580~1 040 nm),其远场输出为具有准高斯分布.  相似文献   

5.
报道了一台可实现脉冲和连续两种工作模式的全光纤激光器.激光器采用主振荡功率放大结构,种子激光器使用直接调制的单模半导体激光器,其输出波长为1 550 nm,光纤放大器包括两级预放大器和一级主放大器.用于脉冲激光输出时,在重复频率50 kHz、泵浦功率4 W时,获得脉冲宽度1.7 ns、峰值功率5.1 kW的单模脉冲激光输出.用于连续激光输出时,获得平均功率为0.5 W的调制信号.该激光器能同时满足脉冲和相位两种测距功能的使用.  相似文献   

6.
18.4W皮秒光纤激光器及其全光纤化超连续谱源   总被引:2,自引:1,他引:1  
采用光纤非线性环形腔被动锁模方案,研制毫瓦级掺镒皮秒光纤激光器,对其进行3级主振荡功率放大(master oscillator power amplifier,MOPA),得到功率18.4 W,重复频率85 MHz,线宽5.7 nm的高质量皮秒激光输出.利用自主研发的模场适配器,实现了此高功率皮秒激光器对长度为50 m高非线性光子晶体光纤的高效全光纤化泵浦,研制了输出功率为3.6 W的全光纤化宽带超连续谱光源,其在1 700nm(500~2 200 nm)的带宽范围内具有10 dB的光谱平坦度.  相似文献   

7.
利用掺Yb大模面积双包层光子晶体光纤和声光调制器(AOM)研制了调Q光子晶体光纤激光器.在65 kHz的重复频率下,得到了最大平均功率为2.5 W,脉冲宽度(FWHM)120 ns,峰值功率320 W,单脉冲能量38.5μJ的调Q单模激光脉冲,激光中心波长为1 038.4 nm.分析介绍了实验中出现的多脉冲现象和激光脉冲重复频率的演化及其原因.  相似文献   

8.
为获得高重频、高增益的355nm紫外激光输出,利用Nd:YVO_4激光晶体、端面泵浦LD和声光Q开关,设计了腔内三倍频V型谐振腔结构,在不同Q开关重复频率下,测试分析了激光功率和脉冲宽度的变化。对激光器参数进行了优化,当LD泵浦电流为9.4A时,355nm紫外激光最高输出平均功率达到了5.38W,脉冲宽度最窄为17.5ns,激光重复频率为30kHz。  相似文献   

9.
主动调Q掺铥双包层光纤激光器   总被引:1,自引:0,他引:1  
利用790 nm半导体激光器作为泵浦源、声光调制器作为Q开关,将4 m长掺铥双包层D型光纤作为增益光纤,在入纤功率9.17 W、调制频率50 kHz时,获得激光器最大输出功率为1.26 W.调制频率为30 kHz时,获得单脉冲能量40μJ的脉冲激光.激光器在30~50 kHz工作时可以获得稳定的脉冲输出.讨论了在阈值入纤功率附近形成1/2、1/3调制频率脉冲及在较大泵浦功率时形成多脉冲的原因.  相似文献   

10.
采用两台大功率光纤输出半导体激光器端面泵浦两块Nd∶ GdVO4晶体,以声光Q开关作为腔内调制元件,用对称结构双晶体串接平行平面谐振腔.在注入泵浦功率为66 W,重复频率为100 kHz时,获得10 W的大功率准连续1.34 μm激光输出,斜率效率为18.3%,脉冲宽度为96 ns,激光输出光束发散角约为衍射极限的2倍.  相似文献   

11.
光子晶体光纤产生超连续谱的相干性研究   总被引:1,自引:1,他引:1  
研究光子晶体光纤中超连续谱的时间相干性和空间相干性.采用时间分辨率为飞秒级的迈克尔逊干涉仪,通过在零点附近改变两光路的延迟,对超连续谱的复时间相干度曲线进行测量,得到超连续谱的相干长度为3.71μm.采用同样系统对飞秒泵浦源的复时间相干度曲线进行测量,计算得到其相干长度为62.24μm.通过计算光程差为零点处的互相干度得到超连续谱的空间相干度为0.77,表明光纤小的发光面积使其空间相干性较好.利用准直透镜和分光棱镜将光纤输出的光束进行分光,得到超连续谱中几种不同颜色的输出光谱及对应的脉冲序列,其脉冲序列与泵浦激光有相同的重复频率.  相似文献   

12.
针对光子晶体光纤(PCF)在可见光波段的光谱展宽机制和特点,实验研究了入射激光的功率和中心波长等对超连续谱(SS)产生的影响,理论分析了光谱展宽的机制以及平坦度增大的原因。结果发现:在入射激光功率较低的情况下,利用包含色散、自相位调制、自变陡及脉冲内拉曼散射效应的非线性薛定谔方程可以准确地分析光谱的展宽情况,理论分析和实验结果一致;但是,当功率较高时,交叉相位调制及四波混频效应成为光谱在短波方向展宽不可忽略的重要因素。  相似文献   

13.
利用100m非线性光子晶体光纤,以光纤光栅对作为谐振腔,研制成功了低阈值光子晶体光纤拉曼激光器.该光子晶体光纤拉曼激光器的闽值为2W,在抽运功率6.2W时,得到最大功率为1.8W.波长为1115.9nm的连续拉曼激光输出,拉曼半峰全宽为1.39nm,对应光-光转化效率29%,斜率效率41%.且在低功率连续光泵浦下观察到5级拉曼荧光.  相似文献   

14.
为了研究微结构光纤在光流体技术中的应用,在空芯光子晶体光纤(hollow-core photonic crystal fiber,HCPCF)纤芯中充入四氯化碳(CCl_4)制成液芯光学微池,用1 064 nm的光源泵浦,测量CCl_4的受激拉曼散射特性.利用包层孔塌缩技术将纤芯直径10μm,长1.8 m的HC-PCF两端包层孔堵住,CCl_4在毛细作用力及外部压力下充满纤芯,其后将两端切去,由于包层空气孔的有效折射率(约1.1)低于CCl_4(约1.45),保证了全反射原理导光.用中心波长1064 nm,重复频率200 kHz,脉宽186ps,可调谐输出功率为0~1 W的光纤激光器作为泵浦源,泵浦CCl_4液芯光纤产生了两级拉曼斯托克斯谱线输出,分别在1118、1172.3 nm处.通过调节泵浦功率测得一阶拉曼阈值对应的峰值功率为0.94 kW.结果表明:微结构光纤是光流体技术的良好载体.  相似文献   

15.
为了改善调Q输出激光脉冲的对称性和重复频率的稳定性,采用LD泵浦的Nd:YAG晶体作为激光工作物质,声光Q开关作为主动调Q,Cr4+:YAG饱和吸收体作为被动调Q开关,搭建了主被动双调Q1064nm激光器,比较了声光调Q和双调Q输出脉冲波形,结果表明,在同一谐振腔内,利用两次单调Q获得了较对称的脉冲,在特定的重复频率和泵浦电流下,输出脉冲的频率保持不变.  相似文献   

16.
用实验和数值模拟两种方法研究在正常色散区内用飞秒脉冲泵浦微结构光纤产生超连续谱的机理.研究发现,在初始阶段,自相位调制对光谱展宽起主要作用,连续谱平坦;当光谱展宽进入反常色散区后,拉曼效应和反常色散的作用使光谱分裂.泵浦波长在正常色散区内离零色散点越远,得到的超连续谱宽度越小,但其在正常色散区的部分光谱却更平坦.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号