首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
采用葡萄糖和乙酸钠对反硝化污泥进行200 d的驯化培养后,通过批次试验研究不同碳源对反硝化过程中亚硝酸盐积累的影响。研究结果表明:采用葡萄糖培养的反硝化污泥以葡萄糖为碳源,反硝化过程中亚硝酸盐积累浓度较低;n(C)/n(N)为5时,NO-2-N最大积累浓度仅为13.79 mg·L-1,最大NO-2-N积累率为31.20%。采用乙酸钠培养的反硝化污泥以乙酸钠为碳源,反硝化过程中亚硝酸盐能快速积累,且积累浓度较高;n(C)/n(N)为3,反应至120 min时NO-2-N积累浓度为37.86 mg·L-1,NO-2-N积累率达到72.48%;该污泥以葡萄糖为碳源,反硝化过程中亚硝酸盐积累浓度也较高;n(C)/n(N)为3,反应至240 min时,NO-2-N积累浓度为24.41 mg·L-1,最大NO  相似文献   

2.
反硝化过程中亚硝酸盐积累特性分析   总被引:4,自引:0,他引:4       下载免费PDF全文
在分段进水工艺处理城市废水实现深度脱氮(TN〈5 mg.L-1)研究中,采用SBR反应器,分别以甲醇或葡萄糖为碳源研究了反硝化过程中亚硝酸盐(NO2--N)的积累情况、pH和ORP变化规律及动力学特性。结果表明,2种碳源系统、不同碳氮比(C/N)条件下反硝化过程均出现明显的NO2--N积累。相同C/N下,在NO2--N积累阶段,葡萄糖碳源系统的NO2--N积累浓度明显大于甲醇碳源,但2种碳源的NO3--N还原速率均大于NO2--N还原速率,且随C/N增加NO2--N的积累浓度逐渐增加,积累时间逐渐缩短。而高C/N下葡萄糖碳源的NO3--N还原速率及NO2--N积累浓度却呈现出下降的趋势。此外,pH和ORP变化规律可很好地表征反硝化过程中NO2--N积累的特征点,通过pH和ORP曲线的第2个拐点可指示反硝化过程的"真正"结束。  相似文献   

3.
以硫化物为基质的硫自养反硝化耦合厌氧氨氧化技术不但能除硫,还可以在硫循环的条件下实现高效脱氮.为实现该技术需要将硫自养反硝化过程控制在亚硝化阶段,随后进行以亚硝酸盐为电子受体的厌氧氨氧化反应.其关键在于如何实现亚硝酸盐的积累.文中介绍了硫自养反硝化的反应机理以及如何对影响亚硝酸盐,积累的因素进行精准调控,探讨了厌氧氨氧化-自养反硝化技术的主要途径.  相似文献   

4.
复合生物反应器亚硝酸型同步硝化反硝化   总被引:1,自引:1,他引:1  
以实际生活污水为对象,利用有效容积为12L的间歇式复合生物反应器(填料体积填充比为30%),通过控制ρ(DO)稳定实现了亚硝酸型同步硝化反硝化脱氮.试验结果表明,在同步硝化反硝化条件下,随着ρ(DO)的升高,亚硝化率逐渐降低,总氮去除率也呈下降趋势.曝气结束,ρ(DO)>4 mg/L时,系统的亚硝化率和总氮去除率均小于50%;当ρ(DO)为2 mg/L,温度维持在(28±1)℃,硝化过程中亚硝化率始终维持在85%以上,ρ(NH4+ -N)去除率大于98%,总氮去除率在75%左右.因此,在试验条件下,只要控制曝气量,使得曝气结束时反应器内ρ(DO)为2 mg/L,就可实现稳定的亚硝酸型同步硝化反硝化生物脱氮.  相似文献   

5.
本文介绍了SBR法硝化、反硝化及连续硝化、反硝化的反应规律。试验结果表明,脱氮进行的顺利与否,主要决定于硝化反应完成的程度。但在反硝化过程,不投加有机碳源的反硝化速率远远低于投加有机碳源的速度。因此,在反硝化时,投加一定的碳源是必要的,它可以加快反硝化速率,缩短反应时间并减小反应器容积。  相似文献   

6.
目的为研究一种最佳的节能生物除磷方法.方法在传统SBR反应器中,考察了分别以NO3--N和NO2--N为电子受体的反硝化除磷过程中的脱氮吸磷现象.结果试验表明以NO3--N为电子受体硝酸型反硝化除磷过程在除磷效果上要优于以NO2--N为电子受体的亚硝酸型反硝化除磷体系,TP去除率可高出20%,但脱氮效果相对低9%.结论将电子受体浓度控制在最佳条件下,有利于反硝化脱氮除磷效果.  相似文献   

7.
同步硝化反硝化脱氮影响因素探讨   总被引:5,自引:0,他引:5  
利用批量实验模拟SBR反应器中的硝化反硝化反应,考察不同温度、pH值、溶解氧(ρDO),碳氮比(COD/NH3)对同步硝化反硝化脱氮效率的影响。研究表明,在温度为30℃,ρDO为5.5mg/L,pH为7.0,碳氮比为20.7时总氮去除率可达48.7%;同时可以推断活性污泥中可能同时存在异养硝化菌和好氧反硝化菌。  相似文献   

8.
污泥发酵液为碳源的反硝化过程亚硝酸盐积累   总被引:2,自引:0,他引:2  
以污泥发酵液为碳源,通过批次试验研究了不同溶解性有机物的质量浓度与硝酸盐氮质量浓度之比(ρ(SCOD)/ρ(NO3--N))和分次投加碳源时反硝化过程亚硝酸盐的积累特性.试验结果表明:不同ρ(SCOD)/ρ(NO3--N)条件下NO2--N都得到积累;ρ(SCOD)/ρ(NO3--N)<4时,NO2--N的最大积累质量浓度和积累速率随着ρ(SCOD)/ρ(NO3--N)的增加而增大,分别达12.83 mg/L和0.107 mg/(L·min).分次投加发酵液与1次投加发酵液相比,NO2--N的最大积累质量浓度相差很小,但分次投加能保持稳定的NO2--N积累.另外,以污泥发酵液为碳源的反硝化过程,反硝化过程NO2--N的积累和发酵液的低pH导致N2O的释放与ρ(SCOD)/ρ(NO3--N)成正相关.因此,在构建反硝化耦合厌氧氨氧化系统时,分次投加发酵液具有很大优势,不仅可产生稳定的NO2--N积累,弱化有机物对厌氧氨氧化菌的抑制作用,还可减少N2O的释放.  相似文献   

9.
采用SBR反应器,接种被驯化的好氧颗粒污泥,研究无有机碳源的条件下Fe~(2+)对硝化反硝化过程的影响。实验所用Fe~(2+)的浓度范围是0.002~1 mg·L~(-1)。结果表明,Fe~(2+)对硝化反硝化过程和好氧污泥的颗粒化有一定的影响。当进水Fe~(2+)浓度设置为0.002 mg·L~(-1)、0.5 mg·L~(-1)、1 mg·L~(-1)时,氨氮转化率分别为98.4%、99%、99.2%,Fe~(2+)对氨氮的降解有些许促进作用。然而,Fe~(2+)有利于亚硝酸盐氮和硝酸盐氮的生成,但对总氮影响甚微。Fe~(2+)的加入使得好氧活性污泥的Zeta电位变小,且进出水电位差变大,平均粒径变大,对好氧活性污泥的颗粒化有促进作用。  相似文献   

10.
以亚硝酸盐为电子受体的反硝化除磷性能研究   总被引:1,自引:0,他引:1  
以实际生活污水为研究对象,在SBR系统中采用厌氧/缺氧运行方式,考察不同亚硝酸盐(NO2--N)质量浓度下以亚硝酸盐为电子受体的反硝化除磷性能.实验根据进水ρ(COD)及亚硝酸钠投加量的不同,分为3个阶段.研究发现,维持缺氧段初始ρ(NO2--N)为20mg/L左右(第Ⅲ阶段),经过长期驯化,运行稳定后,缺氧段吸磷率达74.42%,最大吸磷速率可达11.70 mg/(gMLSS.h);磷去除率达57.8%.此后,又进行了初始ρ(NO 2--N)为50 mg/L的亚硝酸盐冲击负荷试验,缺氧段最大吸磷速率为5.63 mg/(gMLSS.h),与第Ⅲ阶段相比,最大吸磷速率下降53%.随后在未经驯化的情况下,通过短期实验分别考察该系统以NO3--N和O2作为电子受体时的除磷性能,其缺氧段最大吸磷速率分别为11.09和29.268 mg/(gMLSS.h),分别是第Ⅲ阶段最大吸磷速率的94.7%和2.5倍.  相似文献   

11.
为避免序批式活性污泥法(SBR)工艺生物脱氮反硝化过程毒性更大的亚硝态氮(NO2--N)排入受纳水体,以缺氧/厌氧上流式厌氧污泥流化床(UASB)预处理的实际垃圾填埋场渗滤液为研究对象,考察了以氧化还原电位(ORP)作为SBR反硝化过程NO2--N积累控制参数的可行性.结果表明:对于4种不同N初始的ρ(NO3--N),NO2--N均实现明显积累,积累速率分别为0.117、0.136、0.235、0.068/d.反应过程中,ORP曲线先后出现NO3--N和NO2--N拐点,表明硝态氮和亚硝态氮还原反应结束.对于有明显亚硝态氮积累的反硝化过程,仅以NO3--N作为反硝化速率(rDN)的单值函数是不准确的,应以总氧化态氮计,如以NO3--N作为底物,将其定义为“名义”rDN.温度分别为14.2、13.9℃低温,5种不同n(C)/n(N)条件下,亚硝态氮均积累,亚硝态氮峰值点为速率平衡点.当n(C)/n(N)低于理论值时,相对NOx--N→N2的全程反硝化碳源不充足,但相对于NO3--N→NO2--N的转化碳源充足.  相似文献   

12.
利用序批式活性污泥反应器(sequencing batch reactor,SBR)研究了NaCl盐度、水力停留时间(hydraulic retention time,HRT)和进水负荷对短程硝化反硝化的影响.结果表明,在pH、温度和溶解氧(dissolved oxygen,DO)质量浓度分别为7.5~8.5、30~35℃和0.5~1 mg/L的条件下,当NaCl盐度、进水化学需氧量(chemical oxygen demand,COD)和氨氮质量浓度分别为5.8~25.0 g/L、450~550 mg/L和35~45 mg/L时,NO2--N累积率大于50%.在NaCl盐度14.5 g/L的条件下,当HRT为6.21 h,进水中每天1 kg悬浮物中所含的CDD和氨氮量分别为5.03×10-2和2.24×10-3kg时,亚硝酸盐累积率高于99%.高盐环境下控制HRT、有机负荷与氨氮负荷可实现短程硝化反硝化,实现短程硝化的耐盐极限为25 g/L.  相似文献   

13.
在(19±1)℃条件下,采用SBR工艺处理低碳氮比实际生活污水,没有外加有机碳源,通过限氧曝气实现了亚硝酸型同步硝化反硝化生物脱氮(simultaneous nitrification denitrification via nitrite,亚硝酸型SND).试验结果表明,较长污泥龄下(50~66 d),通过控制曝气量使系统溶解氧处于较低水平,好氧末端ρDO<2.0 mg/L,平均ρDO≈0.65 mg/L,不仅可在常温条件下实现短程硝化,ρ(NO2--N)/ρ(NOx--N)稳定在95%以上,而且可同时在该好氧硝化系统中获得高效的反硝化效果,稳定运行后,经亚硝酸型SND途径的总氮去除率(ESND)平均为52%,最高可以达到63.1%.试验分析表明,低ρDO水平是实现亚硝酸型SND的关键因素,通过低ρDO影响硝化菌群的构成、反硝化菌的缺氧微环境以及有机物和ρ(NH4+-N)的降解特性,促进了亚硝酸型SND的形成.  相似文献   

14.
根据短程硝化反硝化生物脱氮的理论要求及生物接触反应器的工艺特性,对传统的生物接触氧化反应器进行了结构与水流流态的改进,在改进后的反应器中,利用人工含氮废水,进行了常温下短程脱氮的可行性与工艺条件的探讨.试验结果表明:在常温(20~25℃),弱碱性(pH=8),低碳氮比(C/N=3)的条件下,控制适当的溶解氧浓度(M(DO)=1.0~1.5 mg/L),可有效地实现短程脱氮的目的,亚硝态氮积累率可达70%~84%,氨氮的转化率在80%以上,说明利用生物接触氧化反应器进行短程脱氮是可行的.  相似文献   

15.
常温短程内源反硝化生物脱氮   总被引:1,自引:1,他引:1  
为了确定短程内源反硝化的特性及其影响因素,采用SBR反应器,在20℃下,对以NO3-和NO2-为电子受体的内源反硝化脱氮状况进行了对比,并对不同污泥浓度下的短程内源反硝化速率进行了研究.结果表明,短程内源反硝化速率约为全程内源反硝化速率的1.6倍;污泥浓度从4g/L变化到12g/L时,短程内源反硝化速率平均值从0.026/d增加到0.038/d;短程内源反硝化间歇运行9个周期后,活性污泥的ρ(VSS)降低约16%,反硝化速率则降低了49%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号