首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Fenton法处理配位含镍废水,并研究了反应温度、废水初始pH值、H_2O_2的质量浓度、FeSO_4·7H_2O与H_2O_2的质量比、初始EDTA的质量对废水处理效果的影响。结果表明:在反应温度为45℃、反应时间为45 min、初始pH值为3、H_2O_2的质量浓度为10g/L、FeSO_4·7H_2O与H_2O_2的质量比为0.06的条件下,含镍废水中Ni~(2+)的去除率达到94.14%。  相似文献   

2.
采用絮凝-Fenton氧化工艺预处理灭多威农药生产废水。考察聚合氯化铝(PAC)和FeSO_42种絮凝剂的处理效果,发现FeSO_4的处理效果明显优于PAC。当FeSO_4质量浓度为34.2 g/L,废水pH值为7时,絮凝效果最好,CODCr去除率达35.2%。后续Fenton氧化的最适条件为:H_2O_2与Fe~(2+)物质的量之比为5∶1、30%H_2O_2加入量30 mL/L,pH值3,反应时间120 min。在此条件下CODCr去除率达76.8%。絮凝-Fenton氧化法CODCr总去除率达到85.0%。  相似文献   

3.
采用Fenton试剂法对环氧树脂生产废水进行处理。考察了pH值、反应时间、FeSO_4·7H_2O及H_2O_2投加量对废水COD_(Cr)去除效果的影响,研究了反应出水pH值与COD_(Cr)去除率之间的关系。通过试验确定了Fenton试剂法处理环氧树脂生产废水的最佳反应条件:pH值为3,反应时间为75 min,FeSO_4·7H_2O投加量为21.6 mmol/L,H_2O_2投加量为0.495 mol/L。在此条件下,废水COD_(Cr)去除率为59.9%,m(BOD_5)/m(COD_(Cr))从0.14提高到0.37,环氧树脂生产废水的可生化性大大提高;试验结果还表明,环氧树脂生产废水出水pH值与COD_(Cr)去除率具有一定联系。  相似文献   

4.
采用混凝-Fenton法处理盘锦油田含油废水,分析PAC用量、PAM用量、pH值、H_2O_2的投加量、FeSO_4·7H2O的投加量、反应温度和反应时间等各因素对COD_(Cr)去除效果的影响,并确定最佳的处理条件。结果表明,混凝试验中PAC的投加量为200 mg/L和PAM的投加量为0.6 mg/L时效果最好;Fenton反应的最佳条件为:pH值为4,H_2O_2投加量为37.8 mmol/L,FeSO_4·7H_2O投加量为3.78 mmol/L,反应温度为75℃,时间为30 min,此时Fenton反应进行最彻底,含油废水COD_(Cr)去除率最高。  相似文献   

5.
《煤化工》2021,49(3)
针对有机工业废水COD难以降解的问题,提出了Fenton-活性炭联合处理工艺,探讨了溶液pH值、FeSO_4投入量、H_2O_2投入量、反应时间和活性炭加入量对废水中COD去除效果的影响。结果表明,综合考虑废水COD的去除率和操作成本,在pH=4、FeSO_4投入量为2.0 g、H_2O_2投入量为1.0 mL、反应时间为50 min、活性炭加入量为0.15 g时,可使处理效果最佳。针对废水水质,设计了Fenton-活性炭联合处理装置,其运行效果稳定,废水COD去除率超过59%,处理后的废水COD达到排放标准。  相似文献   

6.
本研究以模拟苯酚废水为研究对象初步研究了Fenton试剂处理苯酚废水时各影响因素的作用。结果表明,最佳的工艺条件为H_2O_2浓度为10mmol/L,FeSO_4浓度0.8mmol/L,pH值为4,反应时间为30min,去除率可达98%,干扰离子500mg/L氯离子和500mg/L硫酸根离子对其影响不大,因此Fenton试剂降解苯酚非常有效。  相似文献   

7.
Fenton法处理DDNP废水的实验研究   总被引:2,自引:0,他引:2  
采用Fenton法处理DDNP废水,考察H_2O_2与FeSO_4的体积比、试剂总投加量、pH、反应时间等因素对去除效果的影响.实验结果表明,pH为6,质量分数为30%的H_2O_2投加量为40 mL/L左右、Fe~(2+)投加质量浓度为4.56 g/L,振荡1.5 h,COD_(Cr)去除率可达94.78%,色度去除率可达94.38%.  相似文献   

8.
Fenton试剂处理抗生素厌氧处理出水的试验研究   总被引:5,自引:2,他引:3  
采用Fenton试刺处理经厌氧处理后的抗生素废水,通过正交试验确定其主要影响因素的最佳水平组合为:FeSO_4·7H_2O投加量为3mmol(200mL厌氧出水中),进水pH为3.0,[H_2O_2]:[Fe~(2+)]为12:1,反应时间为2h.在正交试验基础上,通过单因子分析确定了系统的最佳运行条件.在FeSO_4·7H_2O投加量为3mmol(200mL厌氧出水中)、进水pH为3.0、[H_2O_2]:[Fe~(2+)]为8:1、反应时间为2h的条件下,对COD的去除率可以达到72%,处理出水BOD_5/COD为0.45.  相似文献   

9.
采用Fenton氧化法对高浓度废乳化液处理进行了研究,基于Box-Behnken响应面法,考察了初始pH、FeSO_4·7H_2O加入量、H_2O_2加入量的单独作用和交叉作用,并建立了COD去除率数学模型,结果表明:影响因子显著性FeSO_4·7H_2O加入量初始pHH_2O_2加入量,初始pH与H_2O_2加入量的交叉作用显著;数学模型回归性较好,预测最佳COD去除率为89.46%。确定了Fenton氧化最佳条件为:初始pH为4.1,FeSO_4·7H_2O加入量为22 mmol/L,H_2O_2加入量为636 mmol/L,验证试验结果为89.11%,与拟合的二次回归模型预测值基本相符。  相似文献   

10.
采用Fenton-铁氧体法处理含铜模拟废水。在pH值3.0、温度40℃、反应时间10 min、H_2O_20.60mL/L、FeSO_4·7H_2O 7.08g/L的条件下,Cu~(2+)的去除率达到92.88%,残余Cu~(2+)的质量浓度为3.56 mg/L。铁氧体法的最优工艺条件为:沉淀pH值10.0,反应时间15 min,温度30℃,FeSO_4·7H_2O 0.154g/L,FeCl_3·6H_2O 0.225g/L。在Fenton-铁氧体法的优化条件下,Cu~(2+)的去除率达到98.28%,残余Cu~(2+)的质量浓度为0.86mg/L,达到排放标准。  相似文献   

11.
采用湿式过氧化物氧化技术(WPO)处理苯酚丙酮装置产生的高浓度有毒有机废水,并在WPO的基础上投加活性炭,加强催化氧化效果。通过单因素实验确定反应温度160℃,反应时间1h,进水pH值为3.0,H_2O_2投送加量控制在H_2O_2/COD=0.5,FeSO_4按照n_(Fe~2+)/n_(H_2O_2)=0.1的比例投加,在活性炭催化作用的强化下,COD和苯酚的去除率分别可以达到90%和99%以上。  相似文献   

12.
《广东化工》2021,48(1)
采用聚合硫酸铁(PFS)-Fenton氧化法对高浓度丙烯酸酯类乳液废水进行预处理。通过混凝实验研究了不同的混凝剂(PAC、FeCl_3、PFS)及助凝剂PAM投量、pH、絮凝时间对废水COD去除率的影响;Fenton氧化实验探讨了H_2O_2和FeSO_4投加量、初始反应pH值、反应时间等因素对混凝处理水样处理效果的影响。结果表明,混凝处理最佳混凝剂为PFS,PFS用量90 mL/L,PAM投药量为5 mL/L,絮凝时间为80 min,pH为6,最大COD去除率达61.4%;Fenton氧化实验最适宜条件为:H_2O_2(浓度30%)投加量28.6 mL/L,FeSO_4(浓度15%)投加量500 mL/L,初始反应pH值为3,反应时间为60 min。处理水COD降低到5195 mg/L,COD去除率达84.4%,可以满足接下来的生物系统对进水有机污染物浓度的要求,对于解决高浓度丙烯酸酯类乳液废水预处理提供了一种参考方案。  相似文献   

13.
王海博 《精细化工》2020,37(5):1032-1037
以FeSO_4·7H_2O和Na_2Mo O_4·2H_2O为原料,采用水热法合成了棒状FeMoO_4,通过XRD、Raman光谱、SEM对其结构和形貌进行了表征,研究了其对Na_2S_2O_8的活化性能。以苯酚为目标污染物,考察了Na_2S_2O_8浓度、苯酚溶液初始质量浓度、溶液初始pH和反应温度对苯酚降解率的影响,初步探究了体系中起主要作用的自由基种类。结果表明,pH在2.00~11.00内,FeMoO_4活化的Na_2S_2O_8对苯酚表现出良好的降解性能,铁离子最大溶出量为1.663 mg/L。最佳降解条件为:溶液初始pH 3.00,反应温度30℃,FeMoO_4质量浓度0.4 g/L,n(Na_2S_2O_8)∶n(苯酚)=25∶1,6 h内苯酚降解率达97.20%;非均相FeMoO_4活化Na_2S_2O_8体系降解苯酚符合一级反应动力学,反应活化能为53.49 kJ/mol;自由基淬灭实验结果表明,SO_4~–·是降解苯酚的主要氧化剂。  相似文献   

14.
采用Fenton氧化对垃圾渗滤液进行预处理研究。结果表明:COD_(Cr)的去除率随H_2O_2投加量的提高,先升高后下降;随FeSO_4投加量的提高,先升高后趋于平缓;随反应时间的延长,趋于平缓;随pH值的升高,先升高后下降。TN的去除率与投药的比例和反应条件关系不大,主要是氨氮的去除,始终保持在17%~30%。在COD_(Cr)质量浓度为2 500~3 000 mg/L、总氮质量浓度为950~1 400 mg/L时,最佳H_2O_2投加量为6 mL/L,FeSO_4投加量为2.5 g/L,最佳反应时间为30 min,反应pH值为4,COD_(Cr)去除率可达69.53%,总氮去除率可达22%,色度去除率可达98.33%,B/C由0.15提高至0.23。Fenton氧化作为垃圾渗滤液的预处理具有较高可行性的。  相似文献   

15.
本文采用Fenton试剂对钕铁硼废料回收废水处理进行试验研究,试验研究了不同初始pH、不同反应时间、不同FeSO_4·7H_2O投加量以及不同H_2O_2/投加量对CODcr去除率的影响,试验研究表明在pH为3-5、反应时间为2h、FeSO_4·7H_2O投加量0.006mol/L,H_2O_2投加量为2mL/L时,废水CODcr去除率可以达到70%以上。由于废水的酸度和Fe2+浓度非常大,采用将废水进行加碱混凝沉淀的方法可以去除废水中大部分可沉淀的阳离子和胶体态的有机物,减轻后续Fenton氧化的压力。  相似文献   

16.
以化工厂废水的COD去除率为评价指标,采用Fenton-混凝法对其进行处理,考察了FeSO_4、H_2O_2的加入量和反应时间、pH等反应条件对废水中COD去除效果的影响。实验结果表明:在废水pH为4,H_2O_2浓度为6%,Fe SO4浓度为1.5%,反应时间为2 h的条件下,该工艺对COD的去除效果最佳,废水中COD值从10500 mg/L降至1980 mg/L,COD去除率最高达81.14%,BOD_5/COD提高到0.6,在降解COD的同时有效提高了废水的可生化性。  相似文献   

17.
通过等体积浸渍法制备了CuO/γ-Al_2O_3催化剂,并对非均相微波协同类Fenton催化降解苯酚溶液进行了实验研究。实验结果表明,在溶液初始pH为6,H_2O_2投加量为4 m L/L,催化剂投加量为4 g/L,微波功率为500 W,反应时间为13 min的条件下,苯酚降解率可达98%,TOC去除率为62%。催化剂重复使用9次后,苯酚降解率为90.88%。通过比较不同氧化体系处理效果及添加·OH捕获剂证实,微波-催化剂-H_2O_2产生了明显的协同作用。  相似文献   

18.
Fenton氧化法是处理难生物降解的苯胺废水的有效方法。本文以苯胺去除率和COD去除率为指标,采用控制变量法探究Fe~(2+)投加量、H_2O_2投加量以及pH值等因素对Fenton试剂处理模拟苯胺废水的处理效果,分析Fenton试剂降解苯胺的机理。研究结果表明,对于浓度为10μg/mL的模拟苯胺废水,当0.5mol/L的FeSO_4溶液投加量为2.5mL、30%H_2O_2溶液投加量为1.5mL(Fe~(2+)与H_2O_2物质的量比约为10∶1),溶液pH值为3.0左右时,苯胺去除率可达到88%;在投加溶液稀释相同的倍数情况下,相应COD去除率可达到68%,为后续的生化处理提供有效条件。  相似文献   

19.
以7-ADCA生产过程中产生的废硫酸调节废水pH值,用芬顿法对某制药厂污水站生化出水进行深度处理,通过正交实验和单因素分析获得最佳反应控制条件为初始pH值4.0,废硫酸投加量0.9mL/L,H_2O_2(27.5%)投加量0.70mL/L,FeSO_4·7H_2O投加量0.60g/L,反应时间90min。在此条件下COD去除率可达58.33%,不仅实现了以废治废,而且为达标排放提供了重要保证。  相似文献   

20.
采用Fenton氧化法处理有机硅工业废水。通过正交试验和单因素试验,考察了反应时间、n(H_2O_2)/n(Fe~(2+))、温度、pH值和H_2O_2投加量等因素对废水CODCr去除率的影响。结果表明,Fenton氧化法的影响因素主次为:H_2O_2投加量、pH值、温度、n(H_2O_2)/n(Fe~(2+))、反应时间;在pH值为3、n(H_2O_2)/n(Fe2+)值为6、反应时间为60 min、温度为35℃的最佳条件下,对于CODCr的质量浓度为5 440 mg/L的有机硅废水,在100 m L的水样中投加14 mL H_2O_2(30%),可使CODCr的去除率达到90.92%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号