共查询到20条相似文献,搜索用时 62 毫秒
1.
采用BP神经网络算法进行短期电力负荷预测存在缺点,需要进行完善和改进。介绍了BP神经网络算法进行短期负荷预测的原理,以及遗传算法的基本原理。具体叙述遗传算法对BP神经网络算法进行优化的实现步骤。优化后的算法避免了原来初始权值和阈值选择的盲目性,提高了BP神经网络算法短期负荷预测的精度和效率。通过具体算例,证明了此算法的可行性和有效性。 相似文献
2.
电力短期负荷预测在实时控制和保证电力系统经济、安全与可靠运行方面起着重要作用,对于系统运行具有重大影响。根据电力短期负荷的变化特点,综合考虑温度、天气、风力等因素,提出了基于遗传算法优化人工神经网络方法的短期负荷预测模型。在试验中采用单一的人工神经网络和优化的神经网络建模分别对广东省某城市电网的短期负荷进行预测。实际预测结果表明,基于遗传算法优化神经网络方法预测模型的预测准确度明显高于单一神经网络方法的预测准确度。 相似文献
4.
针对目前中长期负荷预测方法中存在过拟合、预测精度和效率较低等问题,本文提出一种基于遗传模拟退火算法(GSA)改进BP神经网络的中长期电力负荷预测模型,即BP-GSA模型.首先建立标准三层神经网络,即输入层、隐藏层和输出层,选择国民生产总值、第二产业生产总值、市区常驻人口及月平均温度四个影响因子作为输入变量,月度负荷为输... 相似文献
5.
电力系统短期负荷预测是电力系统运行管理和实时控制所必须的基本内容,预测结果的准确性对电力系统的安全、优质,经济运行具有重要意义.通过非参数预测法建立电力系统短期负荷预测模型,以此作为Elman神经网络训练的样本集,实现网络样本设计,结构设计与网络训练,充分发挥Elman神经网络动态特性,将改进的遗传算法和Elman神经网络相结合,通过选择,交叉、变异等遗传操作,实现了神经网络权值优化.采用基于遗传优化神经网络的电力系统短期负荷预测新算法,提高了负荷预报精度,具体算例证明了算法的可行性和有效性. 相似文献
6.
电力系统短期负荷预测是电力系统运行管理和实时控制所必须的基本内容,预测结果的准确性对电力系统的安全、优质,经济运行具有重要意义。通过非参数预测法建立电力系统短期负荷预测模型,以此作为Elman神经网络训练的样本集,实现网络样本设计、结构设计与网络训练,充分发挥Elman神经网络动态特性,将改进的遗传算法和Elman神经网络相结合,通过选择,交叉、变异等遗传操作,实现了神经网络权值优化。采用基于遗传优化神经网络的电力系统短期负荷预测新算法,提高了负荷预报精度,具体算例证明了算法的可行性和有效性。 相似文献
7.
为了提高短期电力负荷预测精度,分别建立了基于BP神经网络和Elman神经网络的短期负荷预测模型。采用附加动量法优化BP神经网络以提高其收敛速度;针对Elman神经网络易陷入局部极值的缺点,改进其激励函数并采用LM算法优化学习算法。Matlab仿真结果表明,改进后的Elman神经网络模型比BP神经网络模型的预测精度高,收敛速度快,更适合处理动态问题。 相似文献
8.
9.
10.
基于气象负荷因子的Elman神经网络短期负荷预测 总被引:19,自引:0,他引:19
针对地区电网负荷易受气候影响的特点,引入气象负荷因子,提出了一种综合考虑各项气象因素.采用Elman反馈神经网络的短期负荷预测模型。由于Elman神经网络具有动态递归性能.可增强负荷预测模型的适应性。经上海电网实际数据的预测仿真计算,证明此方法与传统神经网络预测模型相比.既能减少输入变量个数,又能有效地提高预测精度。 相似文献
11.
针对传统静态前馈神经网络动态性能较差的缺点,提出了多重局部回归的Elman神经网络,建立了网络的基本结构,并设计了相应的学习算法和学习过程。通过对负荷原始数据的归一化处理,提出将训练数据分段的思想,并利用分段数据对多重局部回归的Elman网络进行训练,通过对收敛曲线和训练误差的分析,确定合适的网络神经元个数和网络训练步数,最后利用实际负荷数据对网络进行了检验。结果表明,改进多重局部回归Elman神经网络比传统Elman神经网络具有更高的预测精度。 相似文献
12.
短期负荷预测(short-term load forcastings,STLF)对电力系统的经济和安全运行有着重要的作用。为提高短期负荷预测的精度,根据短期负荷的基本特性,提出了一种将相空间重构理论(phase space reconstruction space,PSRT)与Elman神经网络相结合的短期负荷多步预测模型。首先利用PSRT重构相空间的吸引子,然后用Elman神经网络来拟合相空间吸引子的多步演化,其中利用空间欧氏距离来选取Elman网络的输入样本。通过对广西电网短期负荷预测的分析表明,该多步预测方法是有效可行的。 相似文献
13.
基于神经网络的短期负荷预测 总被引:1,自引:0,他引:1
针对电力系统短期负荷的变化与影响因素间的复杂非线性关系,首先,提出用BP神经网络进行负荷预测,接着,在输入变量的选择上引入了负荷日期和气象温度,对于日期变量分为工作日和休息日,对于气温变量进行分段处理。最后通过实例仿真表明该方法可以取得较高的预测精度。 相似文献
14.
提出了采用小波变换和遗传算法优化神经网络的混合模型对电力负荷进行短期预测。首先通过小波变换,将原始负荷序列分解到不同的尺度上,然后根据不同的子负荷序列的特性分别建立相匹配的神经网络模型,采用遗传算法优化各神经网络模型的初始权值,最后对各分量预测结果进行重构得到最终预测值。采用成都某地区2009年的实际负荷对所提方法进行验证,实验结果表明基于该方法的负荷预测系统具有较高的预测精度。 相似文献
15.
采用支持向量机和模拟退火算法的中长期负荷预测方法 总被引:9,自引:0,他引:9
准确的中长期负荷预测能够提高电力系统的经济效益和社会效益.分析了支持向量机(support vector nachine,SVM)模型,并针对利用支持向量机进行负荷预测需要人为地确定相关参数的不足,提出了利用支持向量机进行中长期预测的新方法.该方法利用模拟退火(simulated annealing,SA)算法自动优化参数.实例验证结果表明,所提出的方法可以有效地选取支持向量机模型的参数,降低支持向量机的建模误差和测试误差,该方法与利用默认参数支持向量机进行预测的方法相比,有效地提高了负荷预测精度. 相似文献
16.
针对BP网络的缺陷,提出了一种基于RBF神经网络的短期负荷预测方法,利用遗传算法训练神经网络,使神经网络以较快的收敛速度和较大的概率得到了最优解。实例研究结果表明该方法可以取得较高的预测精度。 相似文献
17.
提出一种将混沌时间序列和神经网络相结合的短期负荷预测方法,利用混沌理论重构相空间的吸引子,然后用BP神经网络来拟合空间吸引子的演化,同时利用空间欧氏距离来选取神经网络的输入样本,实例预测结果表明所提出方法的有效性和可行性. 相似文献
18.
针对短期负荷预测的精度问题,文中提出基于改进灰色关联与蝙蝠优化神经网络的短期负荷预测方法。在传统的灰色关联分析方法基础上,引入以距离相似性和形状相近性相关联的综合灰色关联度选取更高相似度的相似日。为缩小训练样本的差异程度,提高预测精度,利用相似日集合中的样本来训练蝙蝠优化的反向传播(BP)神经网络预测模型。以中国南方某城市的历史数据作为实际算例,将文中提出的基于改进灰色关联与蝙蝠优化神经网络的短期负荷预测方法与单纯的BP神经网络法、蝙蝠优化BP神经网络法、传统灰色关联与蝙蝠优化的BP神经网络组合法的预测结果相比,结果表明文中方法的预测精度较高。 相似文献
19.
提出了优化动态递归小波神经网络(dynamic recurrent wavelet neural network,DRWNN)短期负荷预测模型.与常规小波神经网络相比,DRWNN有两个关联层,关联层节点起存储网络内部状态的作用;模型构造过程中增强了网络的前馈与反馈联接,形成多层次的网络递归.采用分布估计算法和遗传算法相融合对DRWNN进行优化,融合实质是在解空间"宏观"和"微观"两个层面进行寻优,可克服DRWNN陷入局部最小,提高DRWNN的泛化能力.对两类不同负荷系统日、周预测仿真测试,验证了模型能有效提高预测精度. 相似文献
20.
电力系统负荷预测是电力生产部门的重要工作之一,其负荷变化具有明显的周期性,文章采用Elman神经网络与BP神经网络建立模型,提出了一种基于神经网络的负荷预测方法.对某电网实际历史数据进行仿真预测,经研究发现,Elman模型具有收敛速度快、预测精度高的特点,同时表明利用Elman回归神经网络建模对莱电网负荷进行预测是完全可行的,在负荷预测领域有着较好的应用前景. 相似文献