首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thermal transport properties of a series of electron-doped CaMnO3 perovskites have been investigated. Throughout the temperature range 5–300 K, phonon thermal conductivity is dominant, and both electron and spin wave contributions are negligible. The short phonon mean free paths in this system result in the relatively low thermal conductivities. The strong phonon scatterings stem from the A-site mismatch and bond-length fluctuations induced by local distortions of MnO6 octahedra. The thermal conductivity in the magnetically ordered state is enhanced as a result of the decrease in spin–phonon scattering. The results also indicate that above the magnetic ordering temperature, observable thermal excitation of optical phonons occurs. The contribution of optical phonons to thermal conductivity becomes non-negligible and is proposed to play an important role in the glass-like thermal transport behavior (i.e. positive temperature dependence of the thermal conductivity) in the paramagnetic state. These features can be understood in terms of an expression of thermal conductivity that includes both acoustic and optical phonon terms.  相似文献   

2.
Pure and doped CaMnO3 were synthesized by applying modified glycine/nitrate procedure. The detailed structural characterization of prepared nanometric size powders, their properties, as well as the results on studying sintering and microstructure of the sintered bodies are given. Since the data on additive influence on densification of CaMnO3 during sintering are difficult to find in the literature, their role in densification is discussed. It was found that increasing Y concentration enhanced densification during sintering, and in addition, suppressed grain growth process. The results of the electrical conductivity measurements as a function of dopant concentration are also discussed.  相似文献   

3.
采用基于密度泛函理论的有限位移法和玻尔兹曼方程,计算了CeO2的晶格动力学性质、热力学性质和热输运性质,计算结果和实验结果基本符合。通过分析CeO2所有声子模式的振动频率、Gruneisen系数和散射率,揭示了光学声子对增强晶格振动的非简谐性和声子散射率所起的重要作用。此外,还计算了不同自由程的声子模式对热导率的贡献,发现CeO2的晶格热导率主要由声子自由程在1~10 nm之间的声子所贡献。  相似文献   

4.
利用溶胶凝胶法制备出(Ca0.96D0.04)MnO3(D=Ca, Sr, Rb, Sm)氧化物粉末后,先分别采用氩气气氛的放电等离子烧结和空气气氛的常压烧结制备出CaMnO3(CMO)块体,并对其相组成进行分析,选择出更为优异的CaMnO3块体制备方法。再进一步制备出(Ca0.96D0.04)MnO3(D=Sr, Rb, Sm)氧化物块体,最后对(Ca0.96D0.04)MnO3(D=Ca, Sr, Rb, Sm)块体的物相组成、显微组织和热电性能进行测试分析。实验结果表明:氩气气氛放电等离子烧结制备的CaMnO3块体发生物相分解,原因是放电等离子烧结的烧结环境贫氧;空气气氛的常压烧结可以得到物相较纯净的(Ca0.96D0.04)MnO3(D=Ca, Sr, Rb, Sm)块体;在整个测试温度范围内,(Ca0.96D0.04)MnO3(D= Sr, Rb, Sm)的ZT值在873K时达到最大,分别为0.11、0.08和0.07,相比于未掺杂试样提高了约1.3~2.2倍。  相似文献   

5.
The photoluminescence properties of Si-N doped BaMgAl10O17:Eu2+, Mn2+ phosphors were studied. Photoluminescence spectrum, powder X-ray diffraction and decay curves were used. The electronic structure of un-doped BaMgAl10O17 was investigated by using the density functional theory. It reveals that an ideal hexagonal shape and particle size in 3-5 μm are obtained by Si-N doping. Additionally, its photoluminescence and thermal stability are both improved. The energy transfer from Eu2+ to Mn2+ also enhanced by suitable Si-N doping. These are expected to be potentially applicable to industrial production of the phosphor in plasma display panels.  相似文献   

6.
First principle calculations are employed to investigate the anti-ferromagnetic CaMnO3 with regard to its geometry, ground state electronic structure and charge distributions. The G-type anti-ferromagnetic CaMnO3 is found to be more stable via total energy minimization calculations; the calculated energy band structure reveals its band gap of 0.7 eV. There are combinations of light carriers in conduction bands and heavy carriers in valence bands that should favor high thermoelectric properties. The Mnd and Op orbitals are responsible for energy bands near Fermi level and they contribute to electronic property. There is strong hybridization between Mnd and Op orbitals and, the hybridization between Mn and O1 orbitals is stronger, it is indicated that the charge carriers are apt to transport along Mn-O1.  相似文献   

7.
The β-phase Zn4Sb3 has attracted much attention because of its high thermoelectric performance in the intermediate temperature range thanks to disorder in the Zn lattice site. In this work are presented structural, thermal, electric and thermoelectric characterization of Zn4Sb3 pure and Ag, Al doped, prepared by a simple synthesis. Structural and microstructural analyses reveal homogeneous one-phases having compositions in agreement with the nominal ones. After thermoelectric characterization, Ag doping results mostly effective in lowering the resistivity and Seebeck coefficient value, by introducing holes in the system. On the other hand, the Al substitution yields a very small decrease of the Seebeck coefficient but, at the same time, a significant decrease of the thermal conductivity mainly due to the depressed phonon contribution. The thermal conductivity behavior is the main responsible for the good thermoelectric performances of (Zn0.99Al0.01)4Sb3, whose thermoelectric figure of merit reaches the encouraging value of 0.23 at 260 K.  相似文献   

8.
A range of lattice dynamical properties of MgF2 in sellaite phase with rutile structure is calculated using a two-body potential model. The potential energy of the structure is minimized, and the phonon frequencies are calculated for the structural parameters corresponding to the energy minimum. The computed phonon frequencies are in good agreement with the experimental data, and the phonon dispersion curves are reproduced just as well. The frequencies calculated throughout the Brillouin zone are used to construct the one-phonon density of states, and the harmonic contributions to the thermodynamic functions, including the heat capacity, are calculated up to 800 K. The thermal expansion coefficient is calculated in a perturbative approximation. The results calculated for the heat capacity and the thermal expansion coefficient are in good agreement with the experimental results, at least below 200 K.  相似文献   

9.
Twelve La2O3 doped diamond-like carbon (DLC) nanofilms were deposited using unbalanced dual-magnetron sputtering. AFM, XRD, Raman spectroscopy, AES, XPS, TEM, contact surface profiler and nanoindenter were employed to investigate the structure and tribological properties of deposited films. The results show that the La2O3 doped DLC films are amorphous. La2O3 doping obviously decreases internal stress, and effectively increases the elastic modulus. This results from the dissolving and dissolution of La2O3 within the amorphous DLC matrix. Furthermore, the friction coefficient of the doped DLC films decreases, and adhesion strength increases. These are attributed to the lubrication function of La2O3 and the formation of transition layer at interface, respectively.  相似文献   

10.
We present a comparative study on the electronic and optical properties of Nb- and F- doped anatase TiO2 by first-principles calculations based on the density functional theory (DFT). Although both TiO2:Nb and TiO2:F have a similar band structure, the effective mass of TiO2:F is larger than that of TiO2:Nb, and the carriers density in the former is lower than that in the latter, indicating that TiO2:Nb has better electronic conductivity than TiO2:F. The interaction between photons and electrons in TiO2:F is much stronger than that in TiO2:Nb, resulting in increased photon absorption and reduced transmittance, especially in the visible and near-infrared regions. The results demonstrate that TiO2:F is not suitable for transparent conductive oxide applications.  相似文献   

11.
《Synthetic Metals》2005,155(2):380-383
The reported heat capacity C(T) data of alkali doped fulleride K3C60 is theoretically investigated in the temperature domain 5  T  25 K. Calculations of C(T) have been made within the two component scheme: one is the phonon (optic and acoustic) and the other is electronic contribution. We begin with the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate vibrational optic and acoustic phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonon mode. Lattice specific heat is well estimated from the Debye and Einstein approximation. Fermionic component as the electronic specific heat coefficient is deduced using the band structure calculations for metallic phase. Comparison of the coefficient of the normal state electron contribution to C with band structure calculations gives an estimate of the electron–phonon coupling strength. It is notice that electron correlations are essential to enhanced density of state over simple Fermi liquid approximation in the metallic phase. The present numerical analysis of specific heat shows dominating role of vibrational optical phonons.  相似文献   

12.
The lattice effect induced by tensile strain on the superconductivity of graphene–MgB2 composites was studied systematically to deduce the electron–phonon coupling (EPC) and the multiple superconducting gap behavior. Compared with nano-carbon doped MgB2, graphene–MgB2 composites show larger lattice parameters and higher critical superconducting transition temperatures (Tc). The EPC strength of MgB2 with ∼2 wt.% graphene addition is even higher than that of the pure reference sample, as estimated from the Sommerfeld constant. The π gap was found to be expanded by graphene addition through the analysis of heat capacity data, and it is responsible for both the enhanced EPC strength and the weak dependence of Tc on the graphene content.  相似文献   

13.
Cu2Ge1−xInxSe3 (x = 0, 0.05, 0.1, 0.15) compounds were prepared by a solid state synthesis. The powder X-ray diffraction pattern of the undoped sample revealed an orthorhombic phase. The increase in doping content led to the appearance of additional peaks related to cubic and tetragonal phases along with the orthorhombic phase. This may be due to the substitutional disorder created by Indium doping. Scanning Electron Microscopy micrographs showed a continuous large grain growth with low porosity, which confirms the compaction of the samples after hot pressing. Elemental composition was measured by Electron Probe Micro Analyzer and confirmed that all the samples are in the stoichiometric ratio. The electrical resistivity (ρ) systematically decreased with an increase in doping content, but increased with the temperature indicating a heavily doped semiconductor behavior. A positive Seebeck coefficient (S) of all samples in the entire temperature range reveal holes as predominant charge carriers. Positive Hall coefficient data for the compounds Cu2InxGe1−xSe3 (x = 0, 0.1) at room temperature (RT) confirm the sign of Seebeck coefficient. The trend of ρ as a function of doping content for the samples Cu2InxGe1−xSe3 with x = 0 and 0.1 agrees with the measured charge carrier density calculated from Hall data. The total thermal conductivity increased with rising doping content, attributed to an increase in carrier thermal conductivity. The thermal conductivity revealed 1/T dependence, which indicates the dominance of Umklapp phonon scattering at elevated temperatures. The maximum thermoelectric figure of merit (ZT) = 0.23 at 723 K was obtained for Cu2In0.1Ge0.9Se3.  相似文献   

14.
The thermal conductivities of [(ZrO2)1−x(CeO2)x]0.92(Y2O3)0.08 (0 ? x ? 1) solid solutions are studied in this paper. The incorporation of ZrO2 and CeO2 in the solid solution decreases the thermal conductivity compared with their end members (YSZ and YDC). The thermal conductivities of the solid solutions show clearly different temperature dependences in the ZrO2-rich (0 ? x ? 0.5) region and in the CeO2-rich region (0.5 ? x ? 1). The composition and the temperature dependence of the thermal conductivities are discussed based on established phonon scattering theories. We have concluded that the composition dependence of the thermal conductivity of this system is mainly controlled by the mass difference between Zr4+ and Ce4+, while the thermal conductivity-temperature relationship is dominated by the randomness of the defect distribution.  相似文献   

15.
利用第一性原理计算研究了掺杂第四周期过渡金属元素对Mo2CoB2的结构、力学和热力学性质的影响。通过计算结合能和形成焓以及与Born-Huang标准比较,发现所有模型都满足力学与热力学稳定条件。采用点缺陷理论确定了掺杂元素在Mo2CoB2晶体中的占位以及占位偏好。结果表明,Sc和Ti对Mo点位表现出强烈的占位偏好,V对Mo点位仅有较弱的占位偏好。同时,Cr、Mn、Fe、Cu和Zn对Co点位具有较弱的占位偏好,而Ni对Co点位有较强的占位偏好。通过对比计算得到德拜温度,发现除Mo7TiCo4B8、Mo7VCo4B8和Mo7CrCo4B8外,其他掺杂模型的德拜温度都低于未掺杂模型,这说明实验中应尽量避免在Mo2CoB2硬质相中大量添加除Ti、V和Cr以外的过渡金属元素。最后,除Cr掺杂模...  相似文献   

16.
Ductile cobalt was introduced into Al2O3-TiC (AT) composites by using a chemical deposition method to improve toughness and resistance to thermal shock. The mixture of Co-coated Al2O3 and TiC powders was hot-pressed into an Al2O3-TiC-Co (ATC) composite. The flexure strength and fracture toughness of the ATC composites have been improved considerably, compared with AT and Al2O3. The fracture surface of ATC shows a large proportion of transgranular cracks with some intergranular type, unlike the intergranular fracture modes of AT and Al2O3. The thermal shock properties of the composites were evaluated by water quenching technique and compared with the traditional AT and Al2O3. The composites containing only 3.96 vol.% cobalt exhibited higher critical temperature difference and retained flexure strength. The SEM examination of the fracture surfaces of the ATC composites after single thermal cycle showed that voids increased in number and size, and most isolated voids coalesced with increasing temperature difference, which caused the density and strength to decrease. The ATC composite is less sensitive to repeated thermal shock than the AT composite.  相似文献   

17.
The dynamic and the thermodynamic properties of KMgH3 have been investigated by density functional theory (DFT). We have found that the calculated lattice parameters differ from the experimental data by less than 0.6% and the electronic density of states (DOS) reveals that the KMgH3 is an insulator. The formation energy of KMgH3 from binary hydrides (MgH2 and KH) has been calculated. Using density-functional perturbation theory, we have calculated the phonon dispersion curves, the phonon density of states, the Born effective charge tensors, the dielectric permittivity tensors and the phonon frequencies at the center of the Brillouin zone of KMgH3. Also we have assigned the calculated phonon frequencies at the gamma point for Infrared-active and Raman-active modes. For the first time, the thermodynamic functions are computed using the phonon density of states.  相似文献   

18.
We investigate the structural, electronic, lattice dynamical, and dielectric properties of SrAl2O4 within density-function theory. The crystal structure is fully relaxed, and the structural parameters are found to be well consistent with the experimental data. The first pressure derivatives of the bulk modulus are predicted to be 2.5 and 4.3 for local density approximation (LDA) and generalized gradient approximation (GGA), respectively. The electronic band structure shows that the valence band maximum is comprised of O 2p states and a small amount of Al 3s and 3p states, and the conduction band minimum is comprised of Sr 5s and a small amount of O 2p, Al 3s and Al 3p states. The phonon frequencies at the center of the Brillouin zone and the dielectric permittivity tensors are calculated using density-function perturbation theory. The electronic (?) and static (?0) dielectric permittivity tensors are theoretically predicted by the calculations with both LDA and GGA formalisms. The results show that the electronic dielectric permittivity is isotropic, while the static dielectric permittivity exhibits to be somewhat anisotropic due to the dominant ionic contributions in static dielectric permittivity.  相似文献   

19.
Monoclinic Li2CO3 has been identified as a critical component of the solid electrolyte interphase (SEI), a passivating film that forms on Li-ion battery anode surfaces. Here, lattice dynamics, finite temperature thermodynamics and the elastic properties of monoclinic Li2CO3 are examined with density functional theory (DFT) and various exchange–correlation functionals. To account for LO-TO splittings in phonon dispersion relations of Li2CO3, which is a polar compound, a mixed-space phonon approach is employed. Bond strengths between atoms are quantitatively explored with phonon force constants. Temperature variations of the entropy, enthalpy, isobaric heat capacity and linear (average) thermal expansion are computed using the quasiharmonic approach. The single-crystal elasticity tensor components along with polycrystalline bulk, shear and Young’s moduli are computed with a least-squares approach based upon the stress tensor computed from DFT. Computed thermodynamic properties as well as structural and elastic properties of the monoclinic Li2CO3 are in close accord with available theoretical and experimental data. In contrast to a recent DFT study, however, computed vibrational spectra suggest that neither the monoclinic Li2CO3 nor its high-temperature hexagonal phase exhibits either elastic or vibrational instabilities.  相似文献   

20.
The phonon conductivities of CoSb3 and its Ba-filled structure Bax(CoSb3)4 are investigated using first-principle calculations and molecular dynamics (MD) simulations, along with the Green–Kubo theory. The effects of fillers on the reduction of the phonon conductivity of filled skutterudites are then explored. It is found that the coupling between filler and host is strong, with minor anharmonicity. The phonon density of states and its dispersion are significantly influenced by filler-induced softening of the host bonds (especially the short Sb–Sb bonds). Lattice dynamics and MD simulations show that, without a change in the host interatomic potentials, the filler–host bonding alone cannot lead to significant alteration of acoustic phonons or lowering of phonon conductivity. The observed smaller phonon conductivity of partially filled skutterudites is explained by treating it as a solid solution of the empty and fully filled structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号