首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceramic compositions based on (aY2O3 + bCeO2)-0.4YCr0.5Mn0.5O3 (a + b = 0.6) were prepared by conventional solid state reaction at 1200 °C, and sintered under air atmosphere at 1600 °C. For 0 ≤ a < 0.6, XRD patterns have shown that the major phases presented in the calcined powders are Y2O3, CeO2 and orthorhombic perovskite YCr0.5Mn0.5O3 phase, respectively. SEM and EDAX observations confirm the YCr0.5Mn0.5O3 phases mostly exist at the grain, whereas the Y2O3 and CeO2 phases mainly exist at the grain boundaries. Complex impedance analysis shows that, for 0 < a ≤ 0.6, single semicircular arc whose shape does not show any change with temperature. Nevertheless, for a = 0, two overlapping semicircular arcs are observed at and above 300 °C. The grain boundary properties exhibit thermistor parameters with a negative temperature coefficient characteristic. The relaxation behavior and conduction for the grain boundary could be due to a space-charge relaxation mechanism and oxygen vacancies, respectively.  相似文献   

2.
Polycrystalline perovskite lead free material (Na0.5Bi0.5)0.91Ba0.090TiO3 was prepared by solid state reaction method. The crystal structure examined by X-ray powder diffraction indicates that the material was single phase with tetragonal structure. Dielectric studies exhibit a diffuse phase transition and characterized by a strong temperature and frequency dispersion of permittivity which relates cation disorder at A-site and exhibits relaxor behaviour. The dielectric relaxation has been modeled using the Vogel-Fulcher relationship, the calculated activation energy found to be Ea = 0.021 eV. Complex impedance analysis indicates the system undergoing a polydispersive non-Debye type relaxation. Also, used to characterize grain and grain-boundary resistivities of Ba substituted (Na0.5Bi0.5)TiO3 ceramic. The phenomenon was also interpreted by accounting for microstructural differences. The corresponding relaxation times were also used to confirm the interpretation of complex impedance spectra. Overlapping of grain boundary and electrode relaxation processes can be separated above about 4000 C. Electrical modulus spectroscopy studies have been performed. The conductivity parameters such as ion-hopping rate (ωp) and the charge carrier concentration (K1) have been calculated using Almond and West formalism.  相似文献   

3.
In this work, we report on the Pb(Mg1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3-Pb(Zr0.52Ti0.48)O3 (PMN-PZN-PZT) ceramics with Ba(W0.5Cu0.5)O3 as the sintering aid that was manufactured in order to develop the low-temperature sintering materials for piezoelectric device applications. The phase transition, microstructure, dielectric, piezoelectric properties, and the temperature stability of the ceramics were investigated. The results showed that the addition of Ba(W0.5Cu0.5)O3 significantly improved the sintering temperature of PMN-PZN-PZT ceramics and could lower the sintering temperature from 1005 to 920 °C. Besides, the obtained Ba(W0.5Cu0.5)O3-doped ceramics sintered at 920 °C have optimized electrical properties, which are listed as follows: (Kp = 0.63, Qm = 1415 and d33 = 351 pC/N), and high depolarization temperature above 320 °C. These results indicated that this material was a promising candidate for high-power multilayer piezoelectric device applications.  相似文献   

4.
The microwave dielectric properties and microstructures of (1 − x)La(Mg0.5Ti0.5)O3-x(Ca0.8Sr0.2)TiO3 ceramics, prepared by a mixed oxide route, have been investigated. The forming of solid solutions was confirmed by the XRD patterns and the measured lattice parameters for all compositions. A near zero τf was achieved for samples with x = 0.5, although the dielectric properties varied with sintering temperature. The Q × f value of 0.5La(Mg0.5Ti0.5)O3-0.5(Ca0.8Sr0.2)TiO3 increased up to 1475 °C, after which it decreased. The decrease in dielectric properties was coincident with the onset of rapid grain growth. The optimum combination of microwave dielectric properties was achieved at 1475 °C for samples where x = 0.5 with a dielectric constant ?r of 47.12, a Q × f value of 35,000 GHz (measured at 6.2 GHz) and a τf value of −4.7 ppm/°C.  相似文献   

5.
Polycrystalline samples of BaFe0.5Nb0.5O3 and (1 − x)Ba(Fe0.5Nb0.5)O3-xSrTiO3 [referred as BFN and BFN-ST respectively] (x = 0.00, 0.15 and 0.20) have been synthesized by a high-temperature solid-state reaction technique. The XRD patterns of the BFN and BFN-ST at room temperature show a monoclinic phase. The microstructure of the ceramics was examined by the scanning electron microscopy (SEM) and shows the polycrystalline nature of the samples with different grain sizes, which are inhomogeneously distributed through the sample surface. Detailed studies of dielectric and impedance properties of the materials in a wide range of frequency (100 Hz-5 MHz) and temperatures (30-270 °C) showed that properties are strongly temperature and frequency dependent. Complex Argand plane plot of ?″ against ?′, usually called Cole-Cole plots is used to check the polydispersive nature of relaxation phenomena in above mentioned compounds. Relaxation phenomena of non-Debye type have been observed in the BFN and BFN-ST ceramics, as confirmed by the Cole-Cole plots.  相似文献   

6.
Crystal structures from two new phosphates Na4NiFe(PO4)3 (I) and Na2Ni2Fe(PO4)3 (II) have been determined by single crystal X-ray diffraction analysis. Compound (I) crystallizes in a rhombohedral system (S. G: R-3c, Z = 6, a = 8.7350(9) Å, c = 21.643(4) Å, R1 = 0.041, wR2=0.120). Compound (II) crystallizes in a monoclinic system (S. G: C2/c, Z = 4, a = 11.729(7) Å, b = 12.433(5) Å, c = 6.431(2) Å, β = 113.66(4)°, R1 = 0.043, wR2=0.111). The three-dimensional structure of (I) is closely related to the Nasicon structural type, consisting of corner sharing [(Ni/Fe)O6] octahedra and [PO4] tetrahedra forming [NiFe(PO4)3]4+ units which align in chains along the c-axis. The Na+ cations fill up trigonal antiprismatic sites within these chains. The crystal structure of (II) belongs to the alluaudite type. Its open framework results from [Ni2O10] units of edge-sharing [NiO6] octahedra, which alternate with [FeO6] octahedra that form infinite chains. Coordination of these chains yields two distinct tunnels in which site Na+.The magnetization data of compound (I) reveal antiferromagnetic (AFM) interactions by the onset of deviations from a Curie-Weiss behaviour at low temperature as confirmed by Mössbauer measurements performed at 4.2 K. The corresponding temperature dependence of the reciprocal susceptibility χ−1 follows a typical Curie-Weiss behaviour for T > 105 K. A canted AFM state is proposed for compound (II) below 46 K with a field-induced magnetic transition at H ≈ 19 kOe, revealed in the hysteresis loop measured at 5 K. This transition is most probably associated with a spin-flop transition.  相似文献   

7.
We present here the results of comprehensive X-ray diffraction and dielectric studies on several compositions of (1 − x)[Pb(Mg0.5W0.5)O3]-xPbTiO3 (PMW-xPT) solid solution across the morphotropic phase boundary. Rietveld analysis of the powder X-ray diffraction data reveals cubic (space group Fm3m) structure of PMW-xPT ceramics for the compositions with x ≤ 0.42, tetragonal (space group P4mm) structure for the compositions with x ≥ 0.72 and coexistence of the tetragonal and cubic phases for the intermediate compositions (0.46 ≤ x ≤ 0.68). Temperature dependence of the dielectric permittivity above room temperature exhibits diffuse nature of phase transitions for the compositions in the cubic and two phase region while the compositions with tetragonal structure at room temperature exhibit sharp ferroelectric to paraelectric phase transition. The PMW-xPT compositions with coexistence of tetragonal and cubic phases at room temperature exhibit two anomalies in the temperature dependence of the dielectric permittivity above room temperature. Using results of structural and dielectric studies a partial phase diagram of PMW-xPT ceramics is also presented.  相似文献   

8.
The microwave dielectric properties of La(Mg0.5−xNixSn0.5)O3 ceramics were examined with a view to their exploitation for mobile communication. The La(Mg0.5−xNixSn0.5)O3 ceramics were prepared by the conventional solid-state method at various sintering temperatures. The X-ray diffraction patterns of the La(Mg0.4Ni0.1Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. Apparent density of 6.71 g/cm3, dielectric constant (?r) of 20.19, quality factor (Q × f) of 74,600 GHz, and temperature coefficient of resonant frequency (τf) of −85 ppm/°C were obtained for La(Mg0.4Ni0.1Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

9.
Ceramic samples of xBi(Al0.5Fe0.5)O3-(1 − x)PbTiO3 (BAF-PT, x = 0.05-0.5) solid solutions were fabricated using the conventional solid state reaction method. X-ray diffraction analysis revealed that all compositions can form single perovskite phase with tetragonal symmetry. The relationship between the tetragonal lattice parameters, tetragonality c/a, cell volume, and ferro-piezoelectric characterization as a function of x was systematically investigated. The BAF modification can effectively improve the poling condition at a proper BAF content. A combination of piezoelectric constant of d33 (50-60 pC/N), electromechanical planar coupling coefficients of kp (20.3-22.5%), and high Curie temperature Tc (>478 °C) suggested that BAF-PT could be a good candidate for high-temperature piezoelectric applications.  相似文献   

10.
To improve the temperature stability of piezoelectric properties of Na0.5K0.5NbO3 (KNN)-based ceramics, Bi(Mg2/3Nb1/3)O3 (BMN) was used to modify Na0.5K0.5NbO3 (KNN)-based ceramics by a conventional sintering technique. Piezoelectric and ferroelectric properties of 0.99K0.5Na0.5NbO3-0.01Bi(Mg2/3Nb1/3)O3 ceramics were studied. It is found that 0.01BMN-0.99KNN ceramics exhibits stable piezoelectric properties as the temperature changes due to the composition fluctuation on B sites (d33 ≈ 130 pC/N, dielectric loss tg θ ≤ 5% in the range 25-300 °C). These results indicate that these materials are promising lead-free piezoelectric ceramic candidates for practical applications.  相似文献   

11.
Bismuth potassium titanate (Bi0.5K0.5TiO3; BKT) and praseodymium-doped BKT (Bi0.5(1−x)PrxK0.5TiO3; BPKT) powders were synthesised using the soft combustion technique. Fine particles of 10-100 nm of BKT and BPKT were produced. A single phase BKT was obtained with a minimum of 0.5 mol of glycine. Various compounds of Bi0.5(1−x)PrxK0.5TiO3 where x = 0.01, 0.03, 0.05, 0.10, 0.15 and 0.20 were prepared. Pure BKT and BPKT powders were obtained after calcination at 800 °C for 3 h. After sintering at 1050 °C for 5 h, pure BKT and BPKT pellets were obtained for x = 0 and 0.01. However, for BPKT with x = 0.03, 0.05, 0.10, 0.15 and 0.20, a minor amount of Bi4Ti3O12 (BIT) secondary phase was present after sintering at 1050 °C for 5 h. The crystallite size and grain size of all the samples followed similar trends, first increasing from x = 0 (undoped BKT) to x = 0.05 and then decreasing above x = 0.05. Among the undoped and doped samples, BPKT with x = 0.05 had the highest dielectric properties (?r = 713.87) due to its large crystallite size (68.66 nm), large grain size (∼435 nm) and high relative density (93.39%).  相似文献   

12.
The Gd(Ni1/2Zr1/2)O3 (GNZ) ceramic is synthesized by the solid-state reaction technique. The X-ray diffraction pattern of the sample shows monoclinic phase at room temperature. The dielectric dispersion of the material is investigated in the temperature range from 303 K to 673 K and in the frequency range from 100 Hz to 1 MHz. The relaxation peak is observed in the frequency dependence of the loss tangent. The relaxation time at different temperatures is found to obey Arrhenius law having activation energy of 1.1 eV which indicates the hopping of ions at the lattice site and may be responsible for the dielectric relaxation of GNZ. The scaling behaviour of loss tangent suggests that the relaxation mechanism is temperature independent. The frequency dependent conductivity spectra follow the power law. In the impedance formalism, the Cole-Cole model is used to study the relaxation mechanism of GNZ.  相似文献   

13.
The electrical properties of the (Na0.6Ag0.4)2PbP2O7 compound were studied using the complex impedance spectroscopy in the temperature range (502-667 K). Grain interior, grain boundary and electrode-material interface contributions to the electrical response are identified by the analysis of complex plan diagrams. The imaginary part of the modulus at several temperatures shows a double relaxation peaks, furthermore suggesting the presence of grains and grain boundaries in the sample. An analysis of the dielectric constants ?′, ?″ and loss tangent tan(δ) with frequency shows a distribution of relaxation times. The dc conductivity of the material is thermally activated with an activation energy about 0.8 eV which is in the vicinity of the that obtained from tan(δ) (E = 0.7 eV) and modulus (Em = 0.68 eV) studies.  相似文献   

14.
We report an orderly study on the structural and dielectric properties of Ni0.5Zn0.5Cr0.5Fe1.5O4 nanoparticles (NPs) synthesized by a polyethylene glycol (PEG)-assisted hydrothermal technique. XRD, FT-IR, FE-SEM and EDX measurements were implemented for the structural, morphological and compositional investigations of the product. Dielectric spectroscopy was used for the dielectric property investigation of the sample. Average particle size of the nanoparticles was estimated using Debye-Scherrer's equation as 34 nm. Electrical properties of the sample have been investigated in the range of 1 Hz to 3 MHz (233-412 K). It is observed that the sample has a giant dielectric constant approaching to 106 within the examined temperature range. It is also determined that the sample exhibits a dispersive phase transition around 305 K at which this giant value of dielectric constant has been obtained. This transition has been characterized by Diffuse Phase Transition. Temperature and frequency dependence of dielectric loss function has been attributed to surface charges for the short-time relaxations and to hopping electrons for the long-time relaxations. At low frequencies, dielectric loss function has been supported by the modified Cole-Cole equation. Frequency and temperature dependent conductivity behavior of the sample has been explained by Overlapping Large Polaron Tunneling model.  相似文献   

15.
The crystal structure, microstructure, dielectric and ferroelectric properties of (1 − x)Na0.5Bi0.5TiO3-xBaTiO3 ceramics with x = 0, 0.03, 0.05, 0.07 and 0.1 are investigated. A structural variation according to the system composition was investigated by X-ray diffraction (XRD) analyses. The results revealed that the synthesis temperature for pure perovskite phase powder prepared by the present sol-gel process is much lower (800 °C), and a rhombohedral-tetragonal morphotropic phase boundary (MPB) is found for x = 0.07 composition which showing the highest remanent polarization value and the smallest coercive field. The optimum dielectric and piezoelectric properties were found with the 0.93Na0.5Bi0.5TiO3-0.07BaTiO3 composition. The piezoelectric constant d33 is 120 pC/N and good polarization behaviour was observed with remanent polarization (Pr) of 12.18 pC/cm2, coercive field (Ec) of 2.11 kV/mm, and enhanced dielectric properties ?r > 1500 at room temperature. The 0.93Na0.5Bi0.5TiO3-0.07BaTiO3-based ceramic is a promising lead-free piezoelectric candidate for applications in different devices.  相似文献   

16.
A new framework compound, [Hg4As2](InBr3.5As0.5) (1), has been prepared by the solid-state reaction of Hg2Br2 with elemental In and As at 450 °C. Compound 1 crystallizes in the space group P63/mmc of the Hexagonal system with two formula units in a cell: a = b = 7.7408(6) Å, c = 12.5350(19) Å, V = 650.47(12) Å3. The crystal structure of 1 features a novel 3D framework, [Hg4As2]2+ with tridymite topology. The optical properties were investigated in terms of the diffuse reflectance and infrared spectra. The electronic band structure along with density of states (DOS) calculated by DFT method indicates that the present compound is semiconductor, and the optical absorption is mainly originated from the charge transitions from Br-4p and As-4p states to Hg-6s and In-5p states.  相似文献   

17.
A novel dibarium cadmium diborate, Ba2Cd(BO3)2, has been successfully synthesized by standard solid-state reaction. Large sheet-like crystal with size up to 20 mm × 15 mm × 0.7 mm has been obtained using top-seed solution growth method. Ba2Cd(BO3)2 crystallizes in the monoclinic space group C2/m with a = 9.6305(4) Å, b = 5.3626(3) Å, c = 6.5236(2) Å, β = 118.079(3)°, Z = 2. The crystal structure is composed of isolated [BO3] triangles, [CdO6] octahedra and [BaO9] polyhedra. CdO6 are vertex-connected with six BO3 to form infinite [Cd(BO3)2] layers extending in (0 0 1) plane, and two rows of Ba atoms closely occupy two side of [Cd(BO3)2] layers to forming stoichiometric sheets. IR and transmittance spectrum of Ba2Cd(BO3)2 were reported.  相似文献   

18.
The phase evolution, crystal structure and dielectric properties of (1 − x)Nd(Zn0.5Ti0.5)O3 + xBi(Zn0.5Ti0.5)O3 compound ceramics (0 ≤ x ≤ 1.0, abbreviated as (1 − x)NZT-xBZT hereafter) were investigated. A pure perovskite phase was formed in the composition range of 0 ≤ x ≤ 0.05. The B-site Zn2+/Ti4+ 1:1 long range ordering (LRO) structure was detected by both XRD and Raman spectra in x ≤ 0.05 samples. However, this LRO structure became gradually degraded with an increase in x. The dielectric behaviors of the compound ceramic at various frequencies were investigated and correlated to its chemical composition and crystal structure. A gradually compensated τf value was obtained in (1 − x)NZT-xBZT microwave dielectrics at x = 0.03, which was mainly due to the dilution of dielectric constant in terms of Claussius-Mossotti differential equation.  相似文献   

19.
(Bi0.5Na0.5)0.94Ba0.06TiO3 + x wt% Dy2O3 with x = 0-0.3 ceramics were synthesized by conventional solid-state processes. The effects of Dy2O3 on the microstructure, the piezoelectric and dielectric properties were investigated. X-ray diffraction pattern confirmed that the coexistence of tetragonal and rhombohedral phases in the (Bi0.5Na0.5)0.94Ba0.06TiO3 composition was not changed by adding 0.05-0.3 wt% Dy2O3. SEM images indicate that all the ceramics have pore-free microstructures with high density, and that doping of Dy2O3 inhibits the grain growth of the ceramics. The addition of Dy2O3 shows the double effects on decreasing the piezoelectric and dielectric properties for 0 < x < 0.15 when Dy3+ ions substitute B-site Ti4+ ions, and increasing the properties for 0.15 < x < 0.3 when Dy3+ ions enters into A-site of the perovskite structure. The optimum electric properties of piezoelectric constant d33 = 170 pC/N and the dielectric constant ?r = 1900 (at a frequency of 1 kHz) are obtained at x = 0.3.  相似文献   

20.
Lead-free (1 − x)Bi0.47Na0.47Ba0.06TiO3-xKNbO3 (BNBT-xKN, x = 0-0.08) ceramics were prepared by ordinary ceramic sintering technique. The piezoelectric, dielectric and ferroelectric properties of the ceramics are investigated and discussed. The results of X-ray diffraction (XRD) indicate that KNbO3 (KN) has diffused into Bi0.47Na0.47Ba0.06TiO3 (BNBT) lattices to form a solid solution with a pure perovskite structure. Moderate additive of KN (x ≤ 0.02) in BNBT-xKN ceramics enhance their piezoelectric and ferroelectric properties. Three dielectric anomaly peaks are observed in BNBT-0.00KN, BNBT-0.01KN and BNBT-0.02KN ceramics. With the increment of KN in BNBT-xKN ceramics, the dielectric anomaly peaks shift to lower temperature. BNBT-0.01KN ceramic exhibits excellent piezoelectric properties and strong ferroelectricity: piezoelectric coefficient, d33 = 195 pC/N; electromechanical coupling factor, kt = 58.9 and kp = 29.3%; mechanical quality factor, Qm = 113; remnant polarization, Pr = 41.8 μC/cm2; coercive field, Ec = 19.5 kV/cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号