首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples of fine particulate matter were collected in a roadway tunnel near Houston, TX over a period of 4 days during two separate sampling periods: one sampling period from 1200 to 1400 local time and another sampling period from 1600 to 1800 local time. During the two sampling periods, the tunnel traffic contained roughly equivalent numbers of heavy-duty diesel trucks. However, during the late afternoon sampling period, the tunnel contained twice as many light-duty gasoline-powered vehicles. The effect of this shift in the vehicle fleet affects the overall emission index (grams pollutant emitted per kilogram carbon in fuel) for fine particles and fine particulate elemental carbon. Additionally, this shift in the fraction of diesel vehicles in the tunnel is used to determine if the chemical mass balancing techniques used to track emissions from gasoline-powered and diesel-powered emissions accurately separates these two emission categories. The results show that the chemical mass balancing calculations apportion roughly equal amounts of the particulate matter measured to diesel vehicles between the two periods and attribute almost twice as much particulate matter in the late afternoon sampling period to gasoline vehicles. Both of these results are consistent with the traffic volume of gasoline and diesel vehicles in the tunnel in the two separate periods and validate the ability for chemical mass balancing techniques to separate these two primary sources of fine particles.  相似文献   

2.
On-road measurements in 2005 of carbon monoxide (CO), hydrocarbons, nitric oxide, nitrogen dioxide, and sulfur dioxide from 1641 individually identified heavy-duty diesel trucks at two locations in Colorado are reported. Carbon monoxide and nitric oxide show increasing emissions with increased altitude. Oxides of nitrogen (NOx) emissions have decreased with more recent model years over the last 10 years but are the same as vehicles that are 20 years old. At the Golden, CO site, there was a statistically significant decrease in fleet emissions of CO and NOx since a similar study in 1999. There was no emission trend for CO or NOx with gross vehicle weight or odometer in units of grams of pollutant per kilogram of fuel consumed. Data from this study suggest that on-road remote sensing can detect illegal, high sulfur fuel use from individual heavy-duty diesel trucks. Ammonia emissions from this study were below the detection limit of the instrument but will be useful as a baseline value for future comparison.  相似文献   

3.
Emissions from gasoline and diesel engines vary on time scales including diurnal, weekly, and decadal. Temporal patterns differ for these two engine types that are used predominantly for passenger travel and goods movement, respectively. Rapid growth in diesel fuel use and decreasing NOx emission rates from gasoline engines have led to altered emission profiles. During the 1990s, on-road use of diesel fuel grew 3 times faster than gasoline. Over the same time period, the NOx emission rate from gasoline engines in California was reduced by a factor of approximately 2, while the NOx emission rate from diesel engines decreased only slightly. Diesel engines therefore grew in both relative and absolute terms as a source of NOx, accounting for about half of all on-road NO, emissions as of 2000. Diesel truck emissions decrease by 60-80% on weekends. Counterintuitive responses to these emission changes are seen in measured concentrations of ozone. In contrast, elemental carbon (EC) concentrations decrease on weekends as expected. Weekly and diurnal patterns in diesel truck activity contribute to variability in the ratio of organic carbon (OC) to EC in primary source emissions, and this could be a source of bias in assessments of the importance of secondary organic aerosol.  相似文献   

4.
This study reports the largest data set of on-road, fuel-based mass emissions of ammonia and sulfur dioxide from vehicles of known make, model year, and fuel type. Ammonia is the first pollutant observed for which the emissions decrease with increasing fleet age from 10 to 20 years. The fixed nitrogen emission ratio is 15.0% by mass and 24.7% by mole, larger than current models predict. Diesel fueled vehicles emit more SO2 than gasoline, and unexpectedly, gasoline SO2 emissions decrease continuously with newer model year vehicles.  相似文献   

5.
The objective of this study was to improve the vehicular emissions inventory for the light- and heavy-duty fleet in the metropolitan area of S?o Paulo (MASP), Brazil. To that end, we measured vehicle emissions in road tunnels located in the MASP. On March 22-26, 2004 and May 04-07, 2004, respectively, CO, CO2, NOx, SO2, and volatile organic compounds (VOCs) emissions were measured in two tunnels: the Janio Quadros, which carries light-dutyvehicles; and the Maria Maluf, which carries light-duty vehicles and heavy-duty diesel trucks. Pollutant concentrations were measured inside the tunnels, and background pollutant concentrations were measured outside of the tunnels. The mean CO and NOx emission factors (in g km(-1)) were, respectively, 14.6 +/- 2.3 and 1.6 +/- 0.3 for light-duty vehicles, compared with 20.6 +/- 4.7 and 22.3 +/- 9.8 for heavy-duty vehicles. The total VOCs emission factor for the Maria Maluf tunnel was 1.4 +/- 1.3 g km(-1). The main VOCs classes identified were aromatic, alkane, and aldehyde compounds. For the heavy-duty fleet, NOx emission factors were approximately 14 times higher than those found for the light-duty fleet. This was attributed to the high levels of NOx emissions from diesel vehicles.  相似文献   

6.
Particulate matter emissions were measured in two bores of the Caldecott Tunnel in Northern California during August and September 2004. One bore (Bore 1) is open to both heavy- and light-duty vehicles while heavy-duty vehicles are prohibited from entering the second bore (Bore 2). Particulate matter number and mass size distributions, chemical composition, and gaseous copollutants were recorded for four consecutive days near the entrance and exit of each bore. Size-resolved emission factors were determined for particle number, particle mass, elemental carbon, organic carbon (OC), sulfate, nitrate, and selected elements. The size distributions in both the bores showed a single large mode at roughly 15-20 nm in mobility diameter, with occasional smaller modes around 100 nm. The PM10 mass emission factor for heavy-duty vehicles was 14.5 times higher than that of light-duty vehicles. The particles derived from diesel are more abundant in elemental carbon, 70.9% of PM10 emissions, as compared to the light-duty vehicles. Conversely, a greater percentage of OC was found in light-duty emissions than heavy-duty emissions. In comparison to previous studies at the Caldecott Tunnel, less particle mass but more particle numbers are emitted by vehicles than was the case 7 years ago.  相似文献   

7.
Pollutant concentrations in the exhaust plumes of individual diesel trucks were measured at high time resolution in a highway tunnel in Oakland, CA, during July 2010. Emission factors for individual trucks were calculated using a carbon balance method, in which pollutants measured in each exhaust plume were normalized to measured concentrations of carbon dioxide. Pollutants considered here include nitric oxide, nitrogen dioxide (NO(2)), carbon monoxide, formaldehyde, ethene, and black carbon (BC), as well as optical properties of emitted particles. Fleet-average emission factors for oxides of nitrogen (NO(x)) and BC respectively decreased 30 ± 6 and 37 ± 10% relative to levels measured at the same location in 2006, whereas a 34 ± 18% increase in the average NO(2) emission factor was observed. Emissions distributions for all species were skewed with a small fraction of trucks contributing disproportionately to total emissions. For example, the dirtiest 10% of trucks emitted half of total NO(2) and BC emissions. Emission rates for NO(2) were found to be anticorrelated with all other species considered here, likely due to the use of catalyzed diesel particle filters to help control exhaust emissions. Absorption and scattering cross-section emission factors were used to calculate the aerosol single scattering albedo (SSA, at 532 nm) for individual truck exhaust plumes, which averaged 0.14 ± 0.03.  相似文献   

8.
In the U.S.A., exhaust emissions from city buses fueled by diesel are not characterized well because current emission standards require engine tests rather than tests of whole vehicles. Two transportable chassis dynamometer laboratories developed and operated by West Virginia University (WVU) have been used extensively to gather realistic emission data from heavy-duty vehicles, including buses, tested in simulated driving conditions. A subset of these data has been utilized for a comprehensive introspection into the trends of regulated emissions from transit buses over the last 7 years, which has been prompted by continuously tightening restrictions on one hand, along with remarkable technological progress, on the other hand. Two widely used models of diesel engines manufactured by the Detroit Diesel Corporation (DDC) have been selected as a case-study for such an overview, based on full-scale, on-site testing of actual city buses, driven in accordance with the SAE J1376 standard of a Commercial Business District (CBD) cycle. The results provide solid, quantitative evidence that most regulated emissions from engines produced by DDC have declined over the years, especially with the transition from the 6V-92TA to the Series 50 models. This improvement is remarkable mainly for the emissions of particulate matter (PM), that are lower by over 70%, on average, for the Series 50 engines, though the emissions of nitrogen oxides (NOx) exhibit a reversed trend, showing a degradation of about 6%, on average, with the transition from 6V-92TA to the Series 50 engines. The expected trend of decreasing emission levels with the model year of the engine is clear and consistent for particulate matter (PM), hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), starting with the 1990 models, although it is not conclusive for carbon dioxide (CO2) emissions.  相似文献   

9.
Motor vehicles are a major source of polycyclic aromatic hydrocarbon (PAH) emissions in urban areas. Motor vehicle emission control strategies have included improvements in engine design, exhaust emission control, and fuel reformulation. Therefore, an updated assessment of the effects of the shifts in fuels and vehicle technologies on PAH vehicular emission factors (EFs) is needed. We have evaluated the effects of ambient temperature on the size-resolved EFs of nine US EPA Priority Pollutant PAH, down to 10 nm diameter, from on-road California gasoline light-duty vehicles with spark ignition (SI) and heavy-duty diesels with compression ignition (CI) in summer 2004 and winter 2005. During the winter, for the target PAH with the lowest subcooled equilibrium vapor pressure --benzo[a]pyrene, benzo[ghi]perylene, and indeno[1,2,3-cd]pyrene-- the mass in the nucleation mode, defined here as particles with dp <32 nm, ranged between 14 and 38% for SI vehicles and 29 and 64% for CI vehicles. Our observations of the effect of temperature on the mass of PAH in the nucleation mode are similar to the observed effect of temperature on the number concentration of diesel exhaust particles in the nucleation mode in a previous report.  相似文献   

10.
Carbonyls can be toxic and highly reactive in the atmosphere. To quantify trends in carbonyl emissions from light-duty (LD) vehicles, measurements were made in a San Francisco Bay area highwaytunnel bore containing essentially all LD vehicles during the summers of 1999, 2001, and 2006. The LD vehicle emission factor for formaldehyde, the most abundant carbonyl, did not change between 1999 and 2001, then decreased by 61 +/- 7% between 2001 and 2006. This reduction was due to fleet turnover and the removal of MTBE from gasoline. Acetaldehyde emissions decreased by 19 +/- 2% between 1999 and 2001 and by the same amount between 2001 and 2006. Absent the increased use of ethanol in gasoline after 2003, acetaldehyde emissions would have further decreased by 2006. Carbonyl emission factors for medium- (MD) and heavy-duty (HD) diesel trucks were measured in 2006 in a separate mixed-traffic bore of the tunnel. Emission factors for diesel trucks were higher than those for LD vehicles for all reported carbonyls. Diesel engine exhaust dominates over gasoline engines as a direct source of carbonyl emissions in California. Carbonyl concentrations were also measured in liquid-gasoline samples and were found to be low (< 20 ppm). The gasoline brands that contained ethanol showed higher concentrations of acetaldehyde in unburned fuel versus gasoline that was formulated without ethanol. Measurements of NO2 showed a yearly rate of decrease for LD vehicle emissions similar to that of total NOx in this study. The observed NO2/NOx ratio was 1.2 +/- 0.3% and 3.7 +/- 0.3% for LD vehicles and diesel trucks, respectively.  相似文献   

11.
One of the major technological challenges for the transport sector is to cut emissions of particulate matter (PM) and nitrogen oxides (NOx) simultaneously from diesel vehicles to meet future emission standards and to reduce their contribution to the pollution of ambient air. Installation of particle filters in all existing diesel vehicles (for new vehicles, the feasibility is proven) is an efficient but expensive and complicated solution; thus other short-term alternatives have been proposed. It is well known that water/diesel (W/ D) emulsions with up to 20% water can reduce PM and NOx emissions in heavy-duty (HD) engines. The amount of water that can be used in emulsions for the technically more susceptible light-duty (LD) vehicles is much lower, due to risks of impairing engine performance and durability. The present study investigates the potential emission reductions of an experimental 6% W/D emulsion with EURO-3 LD diesel vehicles in comparison to a commercial 12% W/D emulsion with a EURO-3 HD engine and to a Cerium-based combustion improver additive. For PM, the emulsions reduced the emissions with -32% for LD vehicles (mass/km) and -59% for the HD engine (mass/ kWh). However, NOx emissions remained unchanged, and emissions of other pollutants were actually increased forthe LD vehicles with +26% for hydrocarbons (HC), +18% for CO, and +25% for PM-associated benzo[a]pyrene toxicity equivalents (TEQ). In contrast, CO (-32%), TEQ (-14%), and NOx (-6%) were reduced by the emulsion for the HD engine, and only hydrocarbons were slightly increased (+16%). Whereas the Cerium-based additive was inefficient in the HD engine for all emissions except for TEQ (-39%), it markedly reduced all emissions for the LD vehicles (PM -13%, CO -18%, HC -26%, TEQ -25%) except for NOx, which remained unchanged. The presented data indicate a strong potential for reductions in PM emissions from current diesel engines by optimizing the fuel composition.  相似文献   

12.
Individual organic compounds found in particulate emissions from vehicles have proven useful in source apportionment of ambient particulate matter. Species of interest include the hopanes, originating in lube oil, and selected PAHs generated via combustion. Most efforts to date have focused on emissions and apportionment PM10 or PM2.5 However, examining how these compounds are segregated by particle size in both emissions and ambient samples will help efforts to apportion size-resolved PM, especially ultrafine particles which have been shown to be more potent toxicologically. To this end, high volume size-resolved (coarse, accumulation, and ultrafine) PM samples were collected inside the Caldecott tunnel in Orinda, California to determine the relative emission factors for these compounds in different size ranges. Sampling occurred in two bores, one off-limits to heavy-duty diesel vehicles, which allows determination of the different emissions profiles for diesel and gasoline vehicles. Although tunnel measurements do not measure emissions over a full engine duty cycle, they do provide an average emissions profile over thousands of vehicles that can be considered characteristic of "freeway" emissions. Results include size-fractionated emission rates for hopanes, PAHs, elemental carbon, and other potential organic markers apportioned to diesel and gasoline vehicles. The results are compared to previously conducted PM2.5 emissions testing using dynamometer facilities and othertunnel environments.  相似文献   

13.
Concerns regarding global warming have increased the pressure on automobile manufacturers to decrease emissions of CO2 from vehicles. Diesel vehicles have higher fuel economy and lower CO2 emissions than their gasoline counterparts. Increased penetration of diesel powered vehicles into the market is a possible transition strategy toward a more sustainable transportation system. To facilitate discussions regarding the relative merits of diesel vehicles it is important to have a clear understanding of their CO2 emission benefits. Based on European diesel and gasoline certification data, this report quantifies such CO2 reduction opportunities for cars and light duty trucks in today's vehicles and those in the year 2015. Overall, on a well-to-wheels per vehicle per mile basis, the CO2 reduction opportunity for today's vehicles is approximately 24-33%. We anticipate that the gap between diesel and gasoline well-to-wheel vehicle CO2 emissions will decrease to approximately 14-27% by the year 2015.  相似文献   

14.
A probabilistic methodology for quantifying intervehicle variability and fleet average uncertainty in highway vehicle emission factors is developed. The methodology features the use of empirical distributions of emissions measurement data to characterize variability and the use of bootstrap simulation to characterize uncertainty. For the base emission rate as a function of mileage accumulation under standard conditions, a regression-based approach was employed in which the residual error terms were included in the probabilistic analysis. Probabilistic correction factors for different driving cycles, ambient temperature, and fuel Reid vapor pressure (RVP) were developed without interpolation or extrapolation of available data. The method was demonstrated for tailpipe carbon monoxide, hydrocarbon, and nitrogen oxides emissions for a selected light-duty gasoline vehicle technology. Intervehicle variability in emissions was found to span typically 2 or 3 orders of magnitude. The uncertainty in the fleet average emission factor was as low as +/- 10% for a 95% probability range, in the case of standard conditions, to as much as -90% to +280% when correction factors for alternative driving cycles, temperature, and RVP are applied. The implications of the results for method selection and for decision making are addressed.  相似文献   

15.
Information about in-use emissions from diesel engines remains a critical issue for inventory development and policy design. Toward that end, we have developed and verified the first mobile laboratory that measures on-road or real-world emissions from engines at the quality level specified in the U.S. Congress Code of Federal Regulations. This unique mobile laboratory provides information on integrated and modal regulated gaseous emission rates and integrated emission rates for speciated volatile and semivolatile organic compounds and particulate matter during real-world operation. Total emissions are captured and collected from the HDD vehicle that is pulling the mobile laboratory. While primarily intended to accumulate data from HDD vehicles, it may also be used to measure emission rates from stationary diesel sources such as back-up generators. This paper describes the development of the mobile laboratory, its measurement capabilities, and the verification process and provides the first data on total capture gaseous on-road emission measurements following the California Air Resources Board (ARB) 4-mode driving cycle, the hot urban dynamometer driving schedule (UDDS), the modified 5-mode cycle, and a 53.2-mi highway chase experiment. NOx mass emission rates (g mi(-1)) for the ARB 4-mode driving cycle, the hot UDDS driving cycle, and the chase experimentwerefoundto exceed current emission factor estimates for the engine type tested by approximately 50%. It was determined that congested traffic flow as well as "off-Federal Test Procedure cycle" emissions can lead to significant increases in per mile NOx emission rates for HDD vehicles.  相似文献   

16.
Size-resolved particulate matter emissions from heavy-duty diesel vehicles (HDDVs) and light-duty gasoline vehicles (LDGVs) operated under realistic driving cycles were analyzed for elemental carbon (EC), organic carbon (OC), hopanes, steranes, and polycyclic aromatic hydrocarbons. Measured hopane and sterane size distributions did not match the total carbon size distribution in most cases, suggesting that lubricating oil was not the dominant source of particulate carbon in the vehicle exhaust. A regression analysis using 17alpha(H)-21beta(H)-29-norhopane as a tracer for lubricating oil and benzo[ghi/perylene as a tracer for gasoline showed that gasoline fuel and lubricating oil both make significant contributions to particulate EC and OC emissions from LDGVs. A similar regression analysis performed using 17alpha(H)-21beta(H)-29-norhopane as a tracer for lubricating oil and flouranthene as a tracerfor diesel fuel was able to explain the size distribution of particulate EC and OC emissions from HDDVs. The analysis showed that EC emitted from all HDDVs operated under relatively high load conditions was dominated by diesel fuel contributions with little EC attributed to lubricating oil. Particulate OC emitted from HDDVs was more evenly apportioned between fuel and oil contributions. EC emitted from LDGVs operated underfuel-rich conditions was dominated by gasoline fuel contributions. OC emitted from visibly smoking LDGVs was mostly associated with lubricating oil, but OC emitted from all other categories of LDGVs was dominated by gasoline fuel. The current study clearly illustrates that fuel and lubricating oil make separate and distinct contributions to particulate matter emissions from motor vehicles. These particles should be tracked separately during ambient source apportionment studies since the atmospheric evolution and ultimate health effects of these particles may be different. The source profiles for fuel and lubricating oil contributions to EC and OC emissions derived in this study provide a foundation for future source apportionment calculations.  相似文献   

17.
New diesel engine technologies and alternative fuel engines are being introduced into fleets of mass transit buses to try to meet stricter emission regulations of nitrogen oxides and particulates: Real-time instruments including an Aerodyne Research tunable infrared laser differential absorption spectrometer (TILDAS) were deployed in a mobile laboratory to assess the impact of the implementation of the new technologies on nitrogen oxide emissions in real world driving conditions. Using a "chase" vehicle sampling strategy, the mobile laboratory followed target vehicles, repeatedly sampling their exhaust. Nitrogen oxides from approximately 170 in-use New York City mass transit buses were sampled during the field campaigns. Emissions from conventional diesel buses, diesel buses with continuously regenerating technology (CRT), diesel hybrid electric buses, and compressed natural gas (CNG) buses were compared. The chase vehicle sampling method yields real world emissions that can be included in more realistic emission inventories. The NO, emissions from the diesel and CNG buses were comparable. The hybrid electric buses had approximately one-half the NOx emissions. In CRT diesels, NO2 accounts for about one-third of the NOx emitted in the exhaust, while for non-CRT buses the NO2 fraction is less than 10%.  相似文献   

18.
Twenty-four properly functioning and six high carbon monoxide emission light-duty gasoline vehicles were emission tested in Denver, CO, using the Federal Test Procedure (FTP), a hot start Unified Cycle (UC), and the REP05 driving cycles at 35 degrees F. All were 1990-1997 model year vehicles tested on both an oxygenated and a nonoxygenated fuel. PM10 emission rates for the properly functioning vehicles using oxygenated fuel averaged 6.1, 3.6, and 12.7 mg/mi for the FTP, UC, and REP05, respectively. The corresponding values for the high emitters were 52, 28, and 24 mg/mi. Use of oxygenated fuel significantly reduces PM10 on the FTP, with all the reduction occurring during the cold start. MOUDI impactor samples showed that 33 and 69% of the PM mass was smaller than 0.1 microm for the FTP and REP05 cycles, respectively, when collected under standard laboratory conditions. Particle number counts were much higher on the REP05 than the FTP. Counts were obtained using secondary dilution of samples drawn from the standard dilution tunnel. FTP PM10 was mostly carbonaceous material, 36% of which was classified as organic. For the REP05, as much as 20% of the PM10 was sulfate and associated water. Forty-five percent of the REP05 PM carbon emissions was classified as organic. Driving cycle had a significant impact on the distribution of the emitted polynuclear aromatic hydrocarbons.  相似文献   

19.
The database on particle number emission factors has been very limited to date despite the increasing interest in the effects of human exposure to particles in the submicrometer range. There are also major questions on the comparability of emission factors derived through dynamometer versus on-road studies. Thus, the aims of this study were (1) to quantify vehicle number emission factors in the submicrometer (and also supermicrometer) range for stop-start and free-flowing traffic at about 100 km h(-1) driving conditions through extensive road measurements and (2) to compare the emission factors from the road measurements with those obtained previously from dynamometer studies conducted in Brisbane. For submicrometer particles the average emission factors for Tora Street were estimated at (1.89 +/- 3.40) x 10(13) particles km(-1) (mean +/- standard error; n = 386) for petrol and (7.17 +/- 2.80) x 10(14) particles km(-1) (diesel; n = 196) and for supermicrometer particles at 2.59 x 10(9) particles km(-1) and 1.53 x 10(12) particles km(-1), respectively. The average number emission factors for submicrometer particles estimated for Ipswich Road (stop-start traffic mode) were (2.18 +/- 0.57) x 10(13) particles km(-1) (petrol) and (2.04 +/- 0.24) x 10(14) particles km(-1) (diesel). One implication of the conclusion that emission factors of heavy duty diesel vehicles are over 1 order of magnitude higher than emission factors of petrol-fueled passenger cars is that future control and management strategies should in particular target heavy duty vehicles, as even a moderate decrease in emissions of these vehicles would have a significant impact on lowering atmospheric concentrations of particles. The finding that particle number emissions per vehicle-km are significantly larger for higher speed vehicle operation has an important implication on urban traffic planning and optimization of vehicle speed to lower their impact on airborne pollution. Additionally, statistical analysis showed that neither the measuring method (dynamometer or on-road), nor data origin (Brisbane or elsewhere in the world), is associated with a statistically significant difference between the average values of emission factors for diesel, petrol, and vehicle fleet mix. However, statistical analyses of the effect of fuel showed that the mean values of emission factors for petrol and diesel are different at a 5% significance level.  相似文献   

20.
This work characterized emission factors of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs) from on-road sampling of three heavy duty diesel vehicles (HDDVs) under experimental conditions of city and highway driving; idling operation; high (>400 ppm) and low (<5 ppm) sulfur (S) fuels; and high mileage and rebuilt engine testing. Emission factors, homologue profiles, and isomer patterns were compared to determine whether the experimental conditions had an impact on PCDD/F emissions, or whether these conditions were uninfluential in determining a fleet-representative emission factor. For a single HDDV tested under conditions of a high mileage engine, a newly rebuilt engine, and the newly rebuilt engine with low S diesel fuel, emission factors were 0.023 (+/- 0.022), 0.008 (+/- 0.002), and 0.016 (+/- 0.013) ng toxic equivalency (TEQ)/km, respectively. These results may infer some limited condition-specific differences in PCDD/F emissions, but these differences do not appear to have a significant effect on the HDDV emission factor. An older HDDV with mechanical fuel controls resulted in a single test value of 0.164 ng TEQ/km, significantly higher than all other results. Observed differences in emission factors, homologue profiles, and TEQ-related isomer patterns from this on-vehicle sampling and others' tunnel sampling suggest limitations in our present characterization of fleet PCDD/F emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号