首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Effects of ageing treatment on the microstructures, mechanical properties and corrosion behavior of the Mg-4.2Zn-1.7RE-0.8Zr-xCa-ySr [x=0, 0.2 (wt.%), y=0, 0.1, 0.2, 0.4 (wt.%)] alloys were investigated. Results showed that Ca or/and Sr additions promoted the precipitation hardening behavior of Mg-4.2Zn-1.7RE-0.8Zr alloy and shortened the time to reaching peak hardness from 13 h to 12 h. The maximum hardness of 77.1±0.6 HV for the peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy was obtained. The microstructures of peak-aged alloys mainly consist of α-Mg phase, Mg51Zn20 phase and ternary T-phase. The Zn-Zr phase is formed within the α-Mg matrix, and the Mg2Ca phase is formed near T-phase due to the enrichment of Ca in front of the solid-liquid interface. Furthermore, fine short rod-shaped β′1 phase is precipitated within the α-Mg matrix in the peak-aged condition. The peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy exhibits optimal mechanical properties with an ultimate tensile strength of 208 MPa, yield strength of 150 MPa and elongation of 3.5%, which is mainly attributed to precipitation strengthening. In addition, corrosion properties of experimental alloys in the 3.5wt.% NaCl solution were studied by the electrochemical tests, weight loss, hydrogen evolution measurement and corrosion morphology observation. The results suggest that peak-aged alloys show reduced corrosion rates compared with the as-cast alloys, and minor additions of Ca and/or Sr improve the corrosion resistance of the Mg-4.2Zn-1.7RE-0.8Zr alloy. The peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy possesses the best corrosion resistance, which is mainly due to the continuous and compact barrier wall constructed by the homogeneous and continuous second phases.

  相似文献   

2.
The degradation behaviors of the as-extruded and solution treated Mg-3Zn-xAg (x=0, 1, 3, mass fraction, %) alloys, as well as as-extruded pure Mg, have been investigated by immersion tests in simulated body fluid (SBF) at 37 °C. The as-extruded Mg-Zn(-Ag) alloys contained Mg51Zn20 and Ag17Mg54. While the quasi-single phase Mg-Zn(-Ag) alloys were obtained by solution treatment at 400 °C for 8 h. The quasi-single phase Mg-Zn(-Ag) alloys showed lower degradation rate and more homogeneous degradation than corresponding as-extruded Mg alloys. Degradation rate of solid-solution treated Mg-3Zn-1Ag and Mg-3Zn-3Ag was approximately half that of corresponding as-extruded Mg alloy. Moreover, the degradation rate of solid-solution treated Mg-3Zn and Mg-3Zn-1Ag was equivalent to that of as-extruded pure Mg. However, heterogeneous degradation also occurred in quasi-single phase Mg-Zn-Ag alloys, compared to pure Mg. So, preparing complete single-phase Mg alloys could be a potential and feasible way to improve the corrosion resistance.  相似文献   

3.
Mg-4Al-xCe-0.3Mn (x = 0, 1, 2, 4 and 6 wt.%) alloys were prepared by high-pressure die-casting. The microstructures, mechanical properties and corrosion behavior were investigated. The cross-section of test bar is divided into the fine skin region and the relatively coarse interior region by a narrow band. The dendritic arm spacing is greatly reduced and the secondary phases Al11Ce3 and (Al, Mg)2Ce with the former being the dominant one substitute the Mg17Al12 phase with addition of Ce. When Ce content reaches 4 wt.%, the alloy exhibits an optimal cost performance ratio. The improved mechanical properties maintained up to 200 °C are mainly related to the fine grain size and the main strengthening phase Al11Ce3, which is present in a high volume fraction, and possesses fine acicular morphology and relatively good thermal stability. The improved corrosion resistance is attributed to the microstructure modification of the alloys and the corrosion product films.  相似文献   

4.
采用XRD、SEM、TEM和XPS等研究了RE和Ti元素对Zn-2.5Al-3Mg合金微观结构和耐蚀性的影响。结果表明,Zn-2.5Al-3Mg合金的微观结构由富Zn相、二元共晶(Zn-MgZn2/Mg2Zn11)和三元共晶(Zn/Al/Mg2Zn11)组成,而含有RE和Ti元素的合金中出现了新相(Ce1-xLax)Zn11和Al2Ti。电化学阻抗谱表明,相对于Zn-2.5Al-3Mg合金,Zn-2.5Al-3Mg-0.1RE-0.2Ti合金的耐蚀性得到了显著的提高。XPS分析结果表明,RE元素的添加促进腐蚀产物Zn5(CO3)2(OH)6和MgAl2O4的形成,而RE和Ti元素的同时添加促进腐蚀产物 Zn5(CO3)2(OH)6、ZnAl2O4和MgAl2O4的形成,且都抑制了疏松多孔ZnO的生成。Zn5(CO3)2(OH)6、ZnAl2O4和MgAl2O4能够很好地粘附在试样表面,提供一层致密的保护层,从而提高Zn-2.5Al-3Mg合金的耐腐蚀性。  相似文献   

5.
A series of new Mg-8Li-xCa-yGd (x = 0, 1, 2; y = 0, 2; wt.%) alloys were prepared, and the microstructure and mechanical properties were investigated. The mechanical properties were characterized by tensile, compression and bending tests at room temperature. The results show that Mg-8Li-1Ca alloy is composed of alpha(Mg), beta(Li) and CaMg2 phases. In addition to the same phases in Mg-8Li-1Ca, there also exists CaLi2 phase in Mg-8Li-2Ca. In addition to the same phases in Mg-8Li-2Ca, GdMg5 phase is also formed in Mg-8Li-1Ca-2Gd alloy due to the addition of Gd. Both Ca and Gd have refining effect in the alloys, and the refining effect of Ca is better than that of Gd. The additions of Ca and Gd can improve the tensile strength and yield strength, but decrease the elongation and the bending strength. Comparing the mechanical properties of the investigated alloys, Mg-8Li-1Ca-2Gd possesses the best mechanical properties.  相似文献   

6.
采用光学显微镜、X射线衍射仪、X射线荧光法、电子探针显微分析仪、扫描电子显微镜、电子背散射衍射、透射电子显微镜和单轴拉伸测试等对Mg-2Zn-1Mn-x Y (x=0,1,3,5,7,质量分数,%)合金的显微组织和力学性能进行研究。结果表明:随着Y元素的加入,铸态合金的第二相由Mg7Zn3转变为Mg3Zn3Y2,最终转变为Mg12ZnY。Y元素的加入阻碍了动态再结晶的生长过程,使晶粒得到细化,但是进一步增加Y含量不会继续增强晶粒细化程度。挤压态Mg-2Zn-1Mn合金加入Y元素后,塑性呈现出先升高后下降的趋势,这可能是受到了织构取向变化和晶粒粗化的共同影响。此外,合金强度提高主要是由于细晶强化和第二相强化作用。Mg-2Zn-1Mn-7Y合金具有最佳的力学性能,其抗拉伸强度为357 MPa,屈服强度为262 MPa,延伸率为14%。  相似文献   

7.
0.5 wt.% Ce and Y were added into the alloy of Mg-8Li-2Zn, respectively. The different behaviors of Ce and Y in the alloy were investigated. Results show that, Ce and Y can both refine the α phase, and the α phase was spheroidized. Two kinds of compounds exist in the alloy when the alloy contains Ce/Y. They are Zn2Ce and Mg6Y, respectively. Zn2Ce mainly distributes at the grain boundary of the alloy with the shape of blocky. Mg6Y mainly distributes in the inner place of grains with the shape of granular. The size of Zn2Ce is much larger than that of Mg6Y. Y and Ce are both favorable for the improvement of strength, and the effect of Y is more obvious. The addition of Ce makes the elongation of the alloy become poor, while the addition of Y can increase the elongation of the alloy.  相似文献   

8.
以Mg-1.5Zn-0.5Ca-0.8Ce合金作为研究对象,分别进行合金化和固溶处理,研究Zr的添加及固溶处理对镁合金Mg-1.5Zn-0.5Ca-0.8Ce耐腐蚀性能的影响,并探究合金化和热处理对镁合金耐腐蚀性能影响机理.结果表明:Zr的加入和固溶处理均有效提高了材料的耐腐蚀性,其中Mg-1.5Zn-0.5Ca-0....  相似文献   

9.
Microstructures and tensile mechanical properties of Mg-10Gd-6Y-2Zn-0.6Zr alloy were systematically studied. Four phases were found in the as-cast specimen: α-Mg, Mg3(GdYZn), Mg12(GdY)Zn and Mg24(GdYZn)5. The long-period stacking order (LPSO) structure is found, which is the phase of Mg12(GdY)Zn. The LPSO structure has two existing forms: lamellar structure in the inner grains and block-like structure at grain boundaries. 6H-type LPSO structure with a stacking sequence of ABCBCB′ is defined in homogenized specimen, where A and B′ layers are significantly enriched by Gd, Y and Zn. The ageing hardening behavior of as-extruded specimens at 200 °C has been investigated. The ultimate tensile strengths of the as-extruded and peak-aged alloys are 360 MPa and 432 MPa, and the elongations are 18% and 5% respectively. The effective strengthening models have been considered to predict the strength. The results suggested that the sub-micron metastable β′ phase was the main strengthening factor of the peak-aged alloy.  相似文献   

10.
Microstructure and biodegradation behavior of as-cast and hot extruded Mg-5Zn-1Y alloy containing different amounts of calcium (0.0%, 0.1%, 0.5%, and 1.0%, mass fraction) were explored. The extrusion process was conducted at three different temperatures of 300, 330, and 370 °C. Chemical composition, phase constitution, microstructure, and biodegradation behavior of the alloys were investigated. The macro- and micro-scopic examination revealed that the addition of Ca refines the grain structure and forms an intermetallic phase, Ca2Mg6Zn3. The hot extrusion process resulted in breaking the intermetallic phases into fine particles routed to the extrusion direction. Moreover, dynamic recrystallization happened in almost all alloys, and more bimodal microstructure was formed in the alloys when the alloys were extruded at 370 °C. Polarization curves showed no passive region, which indicated that active polarization dominated in the alloys; therefore, grain refining through Ca addition and dynamic recrystallization over hot extrusion operation increased biodegradation rate. The results show that the as-cast Mg-5Zn-1Y-0.1Ca alloy provides the highest corrosion resistance, and the extruded Mg-5Zn-1Y-0.5Ca alloy at 300 °C shows the lowest biodegradation rate among the extruded alloys. Therefore, hot extrusion does not always improve the biodegradation behavior of magnesium alloys.  相似文献   

11.
All precipitate morphologies in Mg-4.8%Hg-8%Ga alloy for a range of aging temperatures are investigated in detail using TEM and OM. The results show that Mg5Ga2 and Mg21Ga5Hg3 are the dominant precipitate in Mg-4.8%Hg-8%Ga alloy. Mg5Ga2 phases precipitate in slab and massive morphologies. Mg21Ga5Hg3 phases precipitate in dispersed particles. There have few papers focused on the relationship between the aging behaviour and the electrochemical and corrosion properties in Mg-4.8%Hg-8%Ga alloy. This study elaborates on the morphological evolution of Mg5Ga2 and Mg21Ga5Hg3 precipitates as a function of aging time and temperature and investigates the associated second phase morphology-electrochemical and corrosion response.  相似文献   

12.
Correlations of stoichiometry and phase structure of MgxZny in hot-dipped Zn–Mg–Al coating layer which were modified by additive element have been established on the bases of diffraction and phase transformation principles. X-ray diffraction (XRD) results showed that MgxZny in the Zn–Mg–Al coating layers consist of Mg2Zn11 and MgZn2. The additive elements had a significant effect on the phase fraction of Mg2Zn11 while the Mg/Al ratio had a negligible effect. Transmission electron microscope (TEM) assisted selected area electron diffraction (SAED) results of small areas MgxZny were indexed dominantly as MgZn2 which have different Mg/Zn stoichiometry between 0.10 and 0.18. It is assumed that the MgxZny have deviated stoichiometry of the phase structure with additive element. The deviated Mg2Zn11 phase structure was interpreted as base-centered orthorhombic by applying two theoretical validity: a structure factor rule explained why the base-centered orthorhombic Mg2Zn11 has less reciprocal lattice reflections in the SAED compared to hexagonal MgZn2, and a phase transformation model elucidated its reasonable lattice point sharing of the corresponding unit cell during hexagonal MgZn2 (a, b?=?0.5252 nm, c?=?0.8577 nm) transform to intermediate tetragonal and final base-centered orthorhombic Mg2Zn11 (a?=?0.8575 nm, b?=?0.8874 nm, c?=?0.8771 nm) in the equilibrium state.  相似文献   

13.
The isothermal section of the phase diagram of Ce-Mg-Zn ternary system at 470 K in a full concentration range was built, and a formation of seven ternary compounds was observed. For five ternary compounds: τ1 - Ce3(Zn0.863Mg0.137)11 (Immm space group, La3Al11 structure type), τ3 - CeMg1+xZn2−x (Fm-3m, MnCu2Al), τ4 - CeMg2.5Zn4.5 (P6/mmm, TbCu7), τ5 - Ce3Mg13Zn30 (P63/mmc, Sm3Mg13Zn30) and τ7 - Ce20Mg19Zn81 (F-43m, own structure type) the crystal structures were investigated. The crystal structures of CeMg1−xZnx continuous solid solution and of CeMg12-xZnx and CeMg3-xZnx limited solid solutions were studied more precisely by the X-ray single crystal and powder diffraction, and also using the WDS and EPMA techniques. The Ce-Mg-Zn ternary phases are structurally related to the binary phases of RE-Mg and RE-Zn (RE - rare-earth metals) systems.  相似文献   

14.
The microstructure and mechanical properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) (WGZ1152) alloy during different heat treatments were investigated. Almost all the Mg24(GdYZn)5 eutectic phases dissolved into the α-Mg matrix after solution treatment at 535 °C for 20 h. After ageing at 225 °C for 24 h (T6 state), a great amount of fine β′ precipitates formed. Both the 18R-type long period stacking ordered (LPSO) Mg12YZn phase and 6H′-type LPSO phase exhibit good thermal stability during the high-temperature heat treatments process. The 18R-type LPSO Mg12YZn phases are much harder than α-Mg matrix and have a volume fraction of ∼16%. The ultimate tensile strength at the room temperature of the peak-aged alloy (T6 state) is 307 ± 6 MPa and elongation is 1.4 ± 0.3%. The alloy in T6 state shows anomalous positive temperature dependence of the strength from room temperature to 250 °C, and maintains a strength of more than 260 MPa up to 300 °C (0.64Tm). The excellent strength of the WGZ1152 alloy at both room and elevated temperatures is mainly attributed to the solid solution strengthening, β′ precipitates strengthening and LPSO strengthening. Slip line observations suggest a transition from basal to non-basal slip with increasing temperature.  相似文献   

15.
The effects of addition of calcium up to 4 wt.% on the microstructure and creep properties of Mg-4Sn alloys were investigated by the impression creep test. Impression creep tests were performed in temperature range between 445 and 475 K under normalized stresses σ/G (where σ is the stress; G is the shear modulus) between 0.0225 and 0.035. Optical microscopy and scanning electron microscopy were used to study the microstructure of samples. It is observed that the addition of Ca more than 2 wt.% suppresses less stable MgSn2 phase, and instead forms more thermally stable phases of Ca-Mg-Sn and Mg2Ca at the grain boundaries which improve the creep resistance of Mg-4Sn alloys. According to the stress exponents (6.04<n<6.89) and activation energies (101.37 kJ/mol<Q<113.8 kJ/mol) which were obtained from the impression creep tests, it is concluded that the pipe diffusion climb controlled dislocation creep is the dominant creep mechanism.  相似文献   

16.
Laser surface cladding with Al-Si powders was applied to a Mg-6Zn-1Ca magnesium alloy to improve its surface properties. The microstructure, phase components and chemical compositions of the laser-clad layer were analyzed by using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The results show that the clad layer mainly consists of α-Mg, Mg2Si dendrites, Mg17Al12 and Al3Mg2 phases. Owing to the formation of Mg2Si, Mg17Al12 and Al3Mg2 intermetallic compounds in the melted region and grain refinement, the microhardness of the clad layer (HV0.025 310) is about 5 times higher than that of the substrate (HV0.025 54). Besides, corrosion tests in the NaCl (3.5%, mass fraction) water solution show that the corrosion potential is increased from –1574.6 mV for the untreated sample to –128.7 mV for the laser-clad sample, while the corrosion current density is reduced from 170.1 to 6.7 µA/cm2. These results reveal that improved corrosion resistance and increased hardness of the Mg-6Zn-1Ca alloy can be both achieved after laser cladding with Al-Si powders.  相似文献   

17.
利用DSC、OM、XRD、SEM、TEM、维氏硬度计和万能试验机,研究Mg-6Zn-3Sn合金均匀化过程中的显微组织和力学性能演变,分析合金过烧的原因和扩散动力学,确定合金的均匀化制度。结果表明,单级均匀化处理后,Mg2Zn3相分解,同时伴随着Mg2Sn相的析出。当均匀化温度上升到350℃时,Mg2Zn3相导致合金的过烧。合金合适的均匀化制度为(335℃,24 h)+(400℃,6 h)。在双级均匀化过程中,合金的硬度持续下降,力学性能呈现先升后降的趋势,这与Zn和Sn原子的固溶和Mg2Sn相的析出有关。  相似文献   

18.
The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to the Mg-5Zn-5Sn alloy not only refines the as-cast microstructure of the alloy but also causes the formation of the primary and/or eutectic CaMgSn phases with high thermal stability;an increase in Ca amount from 0.5% to 1.5% (mass fraction) increases the amount and size of the CaMgSn phase.In addition,Ca addition to the Mg-5Zn-5Sn alloy improves not only the tensile properties at room temperature and 150 ℃ but also the creep properties.Among the Ca-containing Mg-5Zn-5Sn alloys,the one added 0.5% (mass fraction) Ca obtains the optimum ultimate tensile strength and elongation at room temperature and 150 ℃,however,the alloy added 1.5% (mass fraction) Ca exhibits the optimum yield strength and creep properties.  相似文献   

19.
20.
Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2Mg8Si6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号