首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocrystalline TiO2 thin films were deposited on a ITO coated glass substrate by sol–gel dip coating technique, the layers undergo a heat treatment at temperatures varying from 300 to 450 °C. The structural, morphological and optical characterizations of the as deposited and annealed films were carried out using X-ray diffraction (XRD), Raman spectroscopy, Atomic Force Microscopy (AFM), visible, (Fourier-Transform) infrared and ultraviolet spectroscopy, Fluorescence and spectroscopic ellipsometry. The results indicate that an anatase phase structure TiO2 thin film with nanocrystallite size of about 15 nm can be obtained at the heat treatment temperature of 350 °C or above, that is to say, at the heat treatment temperature below 300 °C, the thin films grow in amorphous phase; while the heat treatment temperature is increased up to 400 °C or above, the thin film develops a crystalline phase corresponding to the titanium oxide anatase phase. We have accurately determined the layer thickness, refractive index and extinction coefficient of the TiO2 thin films by the ellipsometric analysis. The optical gap decreases from 3.9 to 3.5 eV when the annealing temperature increases. Photocatalytic activity of the TiO2 films was studied by monitoring the degradation of aqueous methylene blue under UV light irradiation and was observed that films annealed above 350 °C had good photocatalytic activity which is explained as due to the structural and morphological properties of the films.  相似文献   

2.
Various content Nb-doped TiO2 thin films were prepared by sol-gel process. XRD analysis shows that the existence of crystalline TiO2 in anatase and rutile form depends on the Nb content in the examined samples. It is observed that Nb promotes the anatase to rutile phase transition but has a depression effect on the anatase grain growth. It is found that incorporation of about 4 at.% of Nb completely transforms anatase TiO2 to the rutile form at a calcination temperature as high as 900 °C. The mechanism is proposed. Optical analyses show that the films have an average of 60% transmission in visible region. The energy gap values using Tauc's formula have also been estimated. The band gap of rutile Ti1−xNbxO2 solid solutions increases with increasing x.  相似文献   

3.
Tin dioxide thin films were prepared successfully by pulsed laser deposition techniques on glass substrates. The thin films were then annealed for 30 min from 50 °C to 550 °C at 50 °C intervals. The influence of the annealing temperature on the microstructure and optical properties of SnO2 thin films was investigated using X-ray diffraction, optical transmittance and reflectance measurements. Various optical parameters, such as optical band gas energy, refractive index and optical conductivity were calculated from the optical transmittance and reflectance data recorded in the wavelength range 300-2500 nm. We found that the SnO2 thin film annealed at temperatures up to 400 °C is a good window material for solar cell application. Our experimental results indicated that SnO2 thin films with the high optical quality could be synthesized by pulsed laser deposition techniques.  相似文献   

4.
TiO2 thin films were deposited on silicon wafer substrates by low-field (1 < B < 5 mT) helicon plasma assisted reactive sputtering in a mixture of pure argon and oxygen. The influence of the positive ion density on the substrate and the post-annealing treatment on the films density, refractive index, chemical composition and crystalline structure was analysed by reflectometry, Rutherford backscattering spectroscopy (RBS) and X-ray diffraction (XRD). Amorphous TiO2 was obtained for ion density on the substrate below 7 × 1016 m− 3. Increasing the ion density over 7 × 1016 m− 3 led to the formation of nanocrystalline (~ 15 nm) rutile phase TiO2. The post-annealing treatment of the films in air at 300 °C induced the complete crystallisation of the amorphous films to nanocrystals of anatase (~ 40 nm) while the rutile films shows no significant change meaning that they were already fully crystallised by the plasma process. All these results show an efficient process by low-field helicon plasma sputtering process to fabricate stoichiometric TiO2 thin films with amorphous or nanocrystalline rutile structure directly from low temperature plasma processing conditions and nanocrystalline anatase structure with a moderate annealing treatment.  相似文献   

5.
Ti-O, Ti-O-C and Ti-O-C-N thin films have been synthesized successfully via metalorganic chemical vapor deposition (MOCVD) technique. Tetrabutyl orthotitanate (TBOT) is used as a precursor in presence of Ar, H2, and N2 as process gases. By controlling deposition temperature and type of process gases, it was possible to control the composition of the deposited films. The deposited films are composed mainly of Ti and O when H2 is used as a process gas in the temperature range 350-500 °C. As the temperature increased up to 600 °C, thin films containing anatase (TiO2) and titanium carbide (TiC) phases are deposited and confirmed by XRD and EDX analyses. As the temperature increased to 750 °C, a transformation from anatase to rutile phase (TiO2) is started and clearly observed from XRD patterns. Titanium nitride (Ti2N and TiN) phase in addition to TiO2 and TiC phases are formed at 600-1000 °C in presence of nitrogen as a process gas. SEM images for all investigated film samples showed that the films are deposited mainly in the form of spherical particles ranged from few nano- to micrometer in size with some additional special features regardless the type of the process gas. Films containing carbon and nitrogen show higher hardness than that containing only oxygen. The obtained results may help in better understanding and controlling film composition and its phase formation in Ti-O-C-N system by MOCVD technique.  相似文献   

6.
Stoichiometric compound of copper indium sulfur (CuIn5S8) was synthesized by direct reaction of high purity elemental copper, indium and sulfur in an evacuated quartz tube. The phase structure of the synthesized material revealed the cubic spinel structure. The lattice parameter (a) of single crystals was calculated to be 10.667 Å. Thin films of CuIn5S8 were deposited onto glass substrates under the pressure of 10−6 Torr using thermal evaporation technique. CuIn5S8 thin films were then thermally annealed in air from 100 to 300 °C for 2 h. The effects of thermal annealing on their physico-chemical properties were investigated using X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), optical transmission and hot probe method. XRD studies of CuIn5S8 thin films showed that as-deposited films were amorphous in nature and transformed into polycrystalline spinel structure with strong preferred orientation along the (3 1 1) plane after the annealing at 200 °C. The composition is greatly affected by thermal treatment. From the optical transmission and reflection, an important absorption coefficient exceeds 104 cm−1 was found. As increasing the annealing temperature, the optical energy band gap decreases from 1.83 eV for the as-deposited films to 1.43 eV for the annealed films at 300 °C. It was found that CuIn5S8 thin film is an n-type semiconductor at 300 °C.  相似文献   

7.
We report the effects of the thermal annealing and dopant concentration on the optical properties of Se or S-doped hydrogenated amorphous silicon thin films. The Se and S-doped a-Si:H (a-Si,Se:H and a-Si,S:H) thin films were prepared by glow discharge plasma enhanced chemical vapor deposition (GD-PECVD) on 7059 corning glass. The films were subsequently annealed in vacuum in the temperature range from 100 to 500 °C. Influence of doping and annealing was examined by means of optical transmission spectroscopy of the films in the wavelength range of 300-1100 nm taken at room temperature. The absorption coefficients and refractive indices decreased as the annealing temperature increased from 100 to 300 °C and then increased again as the annealing temperature further increased to 500 °C, while the highest bandgap was observed at 300 °C for all of the samples. For a given dopant concentration bandgap was observed to be higher in a-Si,S:H than a-Si,Se:H thin films.  相似文献   

8.
Structural and optical properties of selenium-rich CdSe (SR-CdSe) thin films prepared by thermal evaporation are studied as a function of annealing temperature. X-ray diffraction (XRD) patterns show that the as-prepared films were amorphous, whereas the annealed films are polycrystalline. Analyzing XRD patterns of the annealed films reveal the coexistence of both (hexagonal) Se and (hexagonal) CdSe crystalline phases. Surface roughness of SR-CdSe films is measured using atomic force microscope (AFM). Analyses of the absorption spectra in the wavelength range (200-2500 nm) of SR-CdSe thin films indicates the existence of direct and indirect optical transition mechanisms. The optical band gap (Eg) of as-prepared film is 1.92 and 2.14 eV for the indirect allowed and direct allowed transitions respectively. After annealing, the absorption coefficient and optical band gap were found to decrease, while the values of refractive index (n) and the extinction coefficient (kex) increase. The dispersion of the refractive index is described using the Wimple-Di Domenico (WDD) single oscillator model and the dispersion parameters are calculated as a function of annealing temperature. Besides, the high frequency dielectric constant (?) and the ratios of the free carrier concentration to its effective mass (N/m*) are studied as a function of annealing temperature. The results are discussed and correlated in terms of amorphous-crystalline transformations.  相似文献   

9.
Photocatalytic TiO2 films combined with Ag nanoparticles (NPs) embedded-SiO2 films were fabricated by means of a RF magnetron sputtering and subsequent rapid thermal annealing (RTA). X-ray diffraction results show that the TiO2 films have anatase phase when annealed at 500 °C. The Ag NPs were formed by deposition and subsequent annealing at 600 °C. Scanning electron microscopy (SEM) results show that the density of the NPs decreases with increasing Ag film thickness. For example, the average NP diameter varies from ~ 19.3 to ~ 55.9 nm as the film thickness increases from 2 to 12 nm. Transmittance measurements show that as the Ag NP size decreases, the plasmonic peaks shift towards the shorter-wavelength region and become narrower. It is further shown that under UV-illumination (352 nm), all the TiO2 films with the Ag NPs show higher methylene blue decomposition rates compared to the TiO2 only films and the TiO2 films with Ag NP (a 7 nm-thick Ag film) show the best decomposition rate among the samples possibly due to the combined effects of optimized localized field amplification and radiative efficiency.  相似文献   

10.
Face centered cubic (Al0.32Cr0.68)2O3 thin films have been annealed in the temperature range of 500–1000 °C during 2–8 h. The fcc structure of the film remains intact when annealed at temperatures up to 700 °C for 8 h. X-ray diffraction and transmission electron microscopy show the onset of phase transformation to corundum phase alloys in the sample annealed at 900 °C for 2 h, where annealing at 1000 °C for 2 h results in complete phase transformation to α-(Al0.32Cr0.68)2O3. In-plane and out-of-plane line scans performed in EDX TEM and θ/2θ XRD patterns did not show any phase separation into α-Cr2O3 and Al2O3 prior and after the annealing. The apparent activation energy of this process is 380–480 kJ/mol as determined by the Johnson–Mehl–Avrami model.  相似文献   

11.
Nanocrystalline ZnO thin films were prepared on glass substrates by using spin coating technique. The effect of annealing temperature (400-700 °C) on structural, compositional, microstructural, morphological, electrical and optical properties of ZnO thin films were studied by X-ray diffraction (XRD), Energy dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), High Resolution Transmission Microscopy (HRTEM), Scanning Electron Microscopy (SEM), Electrical conductivity and UV-visible Spectroscopy (UV-vis). XRD measurements show that all the films are nanocrystallized in the hexagonal wurtzite structure and present a random orientation. The crystallite size increases with increasing annealing temperature. These modifications influence the optical properties. The AFM analysis revealed that the surface morphology is smooth. The HRTEM analysis of ZnO thin film annealed at 700 °C confirms nanocrystalline nature of film. The SEM results shows that a uniform surface morphology and the nanoparticles are fine with an average grain size of about 40-60 nm. The dc room temperature electrical conductivity of ZnO thin films were increased from 10−6 to 10−5 (Ω cm)−1 with increase in annealing temperature. The electron carrier concentration (n) and mobility (μ) of ZnO films annealed at 400-700 °C were estimated to be of the order of 4.75-7.10 × 1019 cm−3 and 2.98-5.20 × 10−5 cm2 V−1 S−1.The optical band gap has been determined from the absorption coefficient. We found that the optical band gap energy decreases from 3.32 eV to 3.18 eV with increasing annealing temperature between 400 and 700 °C. This means that the optical quality of ZnO films is improved by annealing.It is observed that the ZnO thin film annealing at 700 °C has a smooth and flat texture suited for different optoelectronic applications.  相似文献   

12.
Thiourea modified nanocrystalline titanium dioxide (TiO2) thin films were prepared by sol-gel route and were thermally treated at five different temperatures (400, 500, 600, 800 and 1000 °C). The films were studied using GIXRD, PIGE and UV-vis spectroscopy. It was observed that the anatase to rutile phase transformation of TiO2 was inhibited by the thiourea modification. The transmittance of the modified films appeared reduced which was attributed both to the modification of TiO2 with thiourea and the light scattering in the films. The dark conductivity and the transient photoconductivity of the modified TiO2 sol-gel thin films were studied in vacuum and in air. The environment does not influence significantly the dark conductivity, because of the almost equivalent competition between oxygen and water adsorption. The photoconductivity reaches high values for all samples in both environments, with the sample treated at 500 °C to present the highest value. The larger values in vacuum can be attributed to the reduced amount of adsorbed oxygen at the surface, which acts as electron scavenger.  相似文献   

13.
Highly transparent, p-type conducting SnO2:Zn thin films are prepared from the thermal diffusion of a sandwich structure of Zn/SnO2/Zn multilayer thin films deposited on quartz glass substrate by direct current (DC) and radio frequency (RF) magnetron sputtering using Zn and SnO2 targets. The deposited films were annealed at various temperatures for thermal diffusion. The effect of annealing temperature and time on the structural, electrical and optical performances of SnO2:Zn films was studied. XRD results show that all p-type conducting films possessed polycrystalline SnO2 with tetragonal rutile structure. Hall effect results indicate that the treatment at 400 °C for 6 h was the optimum annealing parameters for p-type SnO2:Zn films which have relatively high hole concentration and low resistivity of 2.389 × 1017 cm− 3 and 7.436 Ω cm, respectively. The average transmission of the p-type SnO2:Zn films was above 80% in the visible light range.  相似文献   

14.
TiO2 ultra-thin (15 nm) films were deposited on silicon wafers (100) and glass slides by pulsed dc reactive magnetron sputtering in an ultra-high vacuum (UHV) system. The effects of substrate temperature, from room temperature to 400 °C, on structural, optical, and hydrophilic properties of the obtained films have been investigated. The structure of the films was characterized by grazing-incidence X-ray diffraction, high-resolution transmission electron microscopy, and atomic force microscopy. The optical properties were determined by UV-vis spectrophotometer and spectroscopic ellipsometry. The hydrophilic properties of the films, after exposed to ultraviolet illumination, were analyzed from contact angle measurements. The results suggested that the substrate temperature at 300 °C was critical in the crystalline phase transformation from amorphous to anatase in the TiO2 films. The obtained films exhibited good qualities in the optical properties, in addition to excellent photo-induced hydrophilic activities.  相似文献   

15.
The properties of TiO2 film prepared by titanium tetrachloride were investigated with respect to annealing temperatures in terms of phase change, crystallite size, and band gap energy. The TiO2 film dried at room temperature exhibited an amorphous phase, while films calcined above 281 and at 990°C displayed anatase TiO2 and a mixture of anatase and rutile, respectively. The TiO2 film was transformed to an anatase phase through three stages during the annealing processes: (1) removal of water, (2) decomposition of a peroxo group, and (3) amorphous-anatase phase transformation. It was also found that the bandgap energy of TiO2 film was changed with increasing annealing temperature. This is attributed to the quantum size effect in the range of 475–675°C and to the formation of rutile phase having lower band gap energy than anatase in the range of 675–990°C.  相似文献   

16.
Li-Co-O thin film cathodes have been deposited onto Si and stainless steel substrates by RF magnetron sputtering from a ceramic LiCoO2 target at various working gas pressures from 0.15 to 25 Pa. Composition, crystal structure and thin film morphology were examined and properties such as intrinsic stress, conductivity and film density were determined. As-deposited films at 0.15 Pa as well as in the range between 5 Pa and 10 Pa working gas pressure showed a nanocrystalline metastable rocksalt structure with disordered cation arrangement and were nearly stoichiometric. To induce a cation ordering the films were annealed in a furnace at temperatures between 100 and 600 °C for 3 h in argon/oxygen atmosphere (Ar:O2 = 4.5:5) of 10 Pa. This cation ordering process was observed by XRD and Raman spectroscopy. For the films deposited at 10 Pa gas pressure an annealing temperature of 600 °C leads to the formation of the high temperature phase HT-LiCoO2 with a layered structure. The Raman spectrum of the films deposited at 0.15 Pa and annealed at 400 °C indicates the formation of the low temperature phase LT-LiCoO2 with a cubic spinel-related structure, which is assumed to be stabilized due to high compressive stress in the film. The electrochemical characterisation of annealed thin film cathodes revealed that the discharge capacity strongly depends on the crystal structure. Thin Li-Co-O films with a perfect layered HT-LiCoO2 structure showed the highest discharge capacities.  相似文献   

17.
Thin TiO2 films on quartz substrates were prepared by spin coating of undoped and metal-ion-doped Sol-Gel precursors. These films were characterised by Scanning Electron Microscopy, Laser Raman Microspectroscopy, X-ray Diffraction and UV-Vis Transmission. The photocatalytic performances of the films were assessed by the photo-degradation of methylene-blue in aqueous solution under UV irradiation. Films exhibited a high degree of orientation and a thermal stabilization of the anatase phase as a result of substrate effects. In the absence of dopants, the rutile phase formed as parallel bands in the anatase which broadened as the transformation progressed. TiO2 films doped or co-doped with transition metals exhibited the formation of rutile in segregated clusters at temperatures under ~ 800 °C as a result of increased levels of oxygen vacancies. Photocatalytic activity of the films synthesised in this work was low as likely a result of poor TiO2 surface contact with dye molecules in the solution. The presence of transition metal dopants appears detrimental to photocatalytic activity while the performance of mixed phase films was not observed to differ significantly from single phase material.  相似文献   

18.
The oxidation resistance and mechanical properties of Ta-Si-N films at high temperature are important issues for application. In this paper, quasi-amorphous Ta-Si-N thin films were fabricated by using reactive magnetron co-sputtering at different Si/Ta power ratios and nitrogen flow ratios (FN2% = FN2/(FAr + FN2) × 100%). Vacuum rapid thermal annealing at 600-900 °C at 2.6 Pa was performed to investigate the oxidation resistance of films. At the higher Si/Ta power ratio and increased FN2%, there is low oxygen fraction (O/(O + N) ≤ 0.2) of films at high annealing temperature which corresponds to benefit oxidation resistance. The crystalline δ-Ta2O5 phase was formed at 900 °C for all films. The islands of oxide were formed on the surface of films at low-Si-content (≤ 20 at.%) after 900 °C annealing. The hardness of all as-deposited Ta-Si-N films was between 16 and 24 GPa. The low-Si-content Ta-Si-N films has higher hardness than high-Si-content (≥ 20 at.%) ones due to lower fraction of soft amorphous SiNx. The effect of annealing temperature on the correlation among process parameters, microstructure, phase transformation and hardness is discussed. The Ta-Si-N formed at 6 FN2% and Si/Ta power ratio of 2/1 can be the best candidate for good oxidation resistance with appropriate mechanical property.  相似文献   

19.
利用磁控溅射法制备得到二氧化钛薄膜,将薄膜在高温管式炉中分别进行退火,利用XRD、AFM和紫外-可见光谱仪研究了不同温度下退火前后薄膜的晶相结构、光学性能和光催化性能。结果表明,随着退火温度的升高二氧化钛的晶相由锐钛矿向金红石转变,600℃时为两相共存,表面颗粒大小也会有相应变化,锐钛矿相表现出了更好的光催化性能。  相似文献   

20.
Effect of annealing on pulsed laser deposited zirconium oxide thin films   总被引:1,自引:0,他引:1  
Zirconium oxide thin films were deposited using pulsed laser ablation from a ceramic ZrO2 target on unheated substrates. Subsequently, the films were annealed in air in the temperature range 400-800 °C. The films were characterized by X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, and optical spectroscopy to investigate the variation of the structural, chemical, and optical properties upon annealing. As-deposited films were amorphous and had a large surface density of ablated particles. Annealing resulted in the growth of monoclinic nano-crystalline, uniform, and transparent films that were slightly sub-stoichiometric. The annealed films were compact and had high values of the refractive index. Extinction coefficients were small, and may be related to the presence of defects. The films exhibited the presence of an indirect band gap, related to defects, and a direct band gap, related to fundamental absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号