首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic oxidative coupling of methane (OCM) to C2 hydrocarbons (C2H6 and C2H4) represents one of the most effective ways to convert natural gas to more useful products,which can be performed effec-tively using La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite hollow fiber membrane microreactor.In this work,the effects of adding a thin BaCe0.8Gd0.2O3-δ (BCG) catalyst film onto the inner LSCF fiber surface as the OCM catalyst and a porous Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) perovskite layer onto the outer LSCF surface to improve the oxygen permeation were evaluated.Between 700 ℃ and 1000 ℃,methane conversion increased in the order of uncoated,BCG and BSCF-coated,and BCG-coated LSCF hollow fiber while C2-selectivity and C2-yield increased in the order of BCG and BSCF-coated,uncoated,and BCG-coated LSCF hollow fiber.Oxygen permeation flux at the same temperature range,on the other hand,was enhanced in the order of uncoated,BCG-coated,and BCG and BSCF-coated LSCF hollow fiber,This finding demon-strates the complex interplay between oxygen permeation and OCM performance.The BCG and BSCF-coated hollow fiber was also subjected to thermal cycles between 850 ℃ and 900 ℃ for up to 175 hours during which the fiber showed minor degradation in oxygen permeation fluxes and relatively stable OCM performance.  相似文献   

2.
The extraction and stripping of phenol using a solution of tributyl phosphate in kerosene in a hydrophobic polypropylene hollow fiber membrane contactor has been studied. The effect of the aqueous and the organic phase flow rates on the overall mass transfer coefficient for both extraction and stripping steps was investigated. Experimental values of the overall mass transfer coefficient were determined and compared with predicted values from the resistance in series model. Results showed that the overall mass transfer coefficients for extraction were about one order of magnitude greater than those measured during the stripping process. The experimental values were in good agreement with the predicted values for the extraction module. However, the predicted values were slightly overestimated for the stripping module. The individual mass transfer resistances were analyzed and the rate-controlling steps of mass transfer were also identified in both extraction and stripping modules. The major resistance in extraction and stripping was in the aqueous phase and in the membrane phase, respectively.  相似文献   

3.
Two-dimensional material membranes with fast transport channels and versatile chemical functionality are promising for molecular separation.Herein,for the first time,we reported design and engineering of two-dimensional Ti3C2Tx MXene (called transition metal carbides and nitrides) membranes supported on asymmetric polymeric hollow fiber substrate for water desalination.The membrane morphology,physic-ochemical properties and ions exclusion performance were systematically investigated.The results demonstrated that surface hydrophilicity and electrostatic repulsion and size sieving effect of interlayer channels synergistically endowed the MXene hollow fiber membrane with fast water permeation and efficient rejection of divalent ions during nanofiltration process.  相似文献   

4.
In this work we evaluated the effect of adding Si as sintering additive into SiC for producing air-sintered hollow fiber membranes. According to crystallographic analyses, SiC and Si were converted to SiO2 after sintering at 1350 °C. The addition of 30 wt% of Si into SiC ceramic material promoted the binding of SiC particles and improved the membrane mechanical resistance to 42.25 ± 3.39 MPa after air sintering at 1350 °C. The produced asymmetric ceramic membrane presented a packed pore-network and micro-voids with pore sizes of 1.73 and 5.29 μm, respectively. The filtration of an oil/water emulsion enabled oil retention 98.75 ± 0.95 %. Cake formation was the main fouling occurrence and membrane regeneration with equivalent oil retention and similar steady sate flux was achieved after water cleaning under ultrasound irradiation. Thus, the use of Si as air-sintering aid was favorable for producing Si-bonded SiC hollow fiber membranes with suitable application for oil/water separation.  相似文献   

5.
The first oxygen permeation data of a dense hollow fiber perovskite membrane based on BaCoxFeyZrzO3 − δ are reported. The hollow fiber was prepared by a phase inversion process. Dense fibers were obtained with the following typical geometries: outer diameter, 800–900 μm; inner diameter, 500–600 μm; length, 30 cm. The O2-permeation through the hollow fiber perovskite membrane was studied in a high-temperature gas permeation cell under different operation conditions. The increase of the helium gas flow rate reduces the oxygen partial pressure (pO2) on the core side and a higher oxygen permeation flux is observed. High oxygen flux of 0.73 m3 (O2)/(m2 (membrane) h) was achieved at 850 °C under the operation parameters Fair (shell side) = 150 ml/min and FHe (core side) = 30 ml/min. The oxygen partial pressure dependence of the O2 permeation flux indicated an interplay of both surface reaction and bulk diffusion as rate limiting steps. During 5 days of permeation a high and stable oxygen flux was observed. X-ray diffraction patterns of fresh and spent membranes after the permeation measurements revealed that no degradation after oxygen permeation appears.  相似文献   

6.
There has been a resurgence of interest in forward osmosis (FO) as a potential means of desalination, dewatering and in pressure retarded osmosis, which Sidney Loeb was advocating over 3 decades ago. This paper describes the characteristics and potential applications of a newly developed FO hollow fiber membrane, which was fabricated by interfacial polymerization on the inner surface of a polyethersulfone (PES) hollow fiber. This FO membrane presents excellent intrinsic separation properties, with a water flux of 42.6 L/m2 h using 0.5 M NaCl as the draw solution and DI water as the feed with the active layer facing the draw solution orientation at 23 °C. The corresponding ratio of salt flux to water flux was only 0.094 g/L, which is superior to all other FO membranes reported in the open literature. To evaluate different application scenarios, various NaCl solutions (500 ppm (8.6 mM), 1 wt.% (0.17 M) and 3.5 wt.% (0.59 M)) were used as the feed water to test the performance of the FO membrane. The membrane can achieve a water flux of 12.4 L/m2 h with 3.5 wt.% NaCl solution as the feed and 2 M NaCl as the draw solution, suggesting it has good potential for seawater desalination.  相似文献   

7.
建立了水蒸气在中空纤维复合膜中渗透的微分阻力模型,用实验验证了模型的可靠性。采用该模型估算出中空纤维膜的结构参数,研究了水蒸气在各层膜中的阻力,并以H2O/C2H2系统为例,考察了膜的结构参数对H2O/C2H2选择性的影响。  相似文献   

8.
Polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared using the solvent spinning method. N,N-dimethylacetamide was the solvent and ethylene glycol was employed as non-solvent additive. The effect of the concentration of ethylene glycol in the PVDF spinning solution as well as the effect of ethanol either in the internal or the external coagulant on the morphology of the hollow fibers was investigated. The prepared membranes were characterized in terms of the liquid entry pressure of water measurements, the gas permeation tests, the scanning electron microscopy, the atomic force microscopy, and the solute transport experiments. Ultrafiltration experiments were conducted using polyethylene glycol and polyethylene oxides of different molecular weights cut-off as solutes. A comparative analysis was made between the membrane characteristic parameters obtained from the different characterization techniques.  相似文献   

9.
《Ceramics International》2017,43(18):16283-16291
Ceramic hollow fibers from natural dolomite with different pore structures have been designed. The unique hollow fibers were produced by the phase inversion method and applying different sintering temperatures. The hollow fiber precursor presented coagulated polymers through the fiber thickness due to the high granulometric size of the used dolomite material (11.3–47.2 µm). The fiber sintered at 400 °C presented mechanical strength of 4.5 MPa and water permeability of 84.7 L h−1 m−2 kPa−1. The increase in the sintering temperature up to 1250 °C resulted in fragile hollow fibers due to dolomite transformations that resulted in gas release and a significant mass loss of 33.7%. At 1350 °C, the liquid phase sintering mechanism occurred and the dolomite hollow fiber sintered at 1350 °C presented mechanical strength of 5.5 MPa and water permeability of 2219 L h−1 m−2 kPa−1. Doloma dissolution in water was investigated and calcium concentration was increased from 0.72 (pure water) to 2.905 ppm for a contact time from 4 h between the fiber sintered at 1250 °C and pure water. However, this dissolution did not decrease the mechanical resistance of the fiber. These results suggest the potential of applying natural dolomite for producing low cost membranes or substrates. The hollow fiber sintered at 400 °C is suggested to be used as a proper separation medium, while the hollow fiber sintered at 1350 °C may be used as a substrate for the deposition of a separation layer to be used in gas separations. The high porosity of the fiber sintered at 1250 °C suggests its application as a support for the impregnation of functional materials. Thus, depending on the applied sintering temperature the dolomite membrane can be used in different applications.  相似文献   

10.
This work presents the design of hollow fiber T-type zeolite membrane modules with different geometric configurations. The module performances were evaluated by pervaporation dehydration of ethanol/water mixtures. Strong concentration polarization was found for the modules with big membrane bundles. The concen-tration polarization was enhanced at high temperature due to the higher water permeation flux. The increase of feed flow could improve water permeation flux for the membrane modules with small membrane bundle. Computational fluid dynamics was used to visualize the flow field distribution inside of the modules with different configurations. The membrane module with seven bundles exhibited highest separation efficiency due to the uniform distribution of flow rate. The packing density could be 10 times higher than that of the tubular membrane module. The hollow fiber membrane module exhibited good stability for ethanol dehydration.  相似文献   

11.
The asymmetric morphology of silicon nitride (Si3N4) ceramic hollow fiber membrane with a selective spongiform outer layer was optimized by the air gap distance and the internal rate of coagulate for oil/water emulsion microfiltration. The effect of trans-membrane pressure (TMP), feed flow rate (FFR), and pH of the feeding emulsion on the separation performance were determined experimentally. Membrane fouling has increased by dissociation of oil droplets during filtration at high TMP and FFR values. Fouling phenomena were studied based on standard pore blocking model. The pH by affecting the surface charge of the Si3N4 hollow fibers and zeta potential of the feed emulsion has also been introduced as a prominent influential factor on separation efficiency. The highest values of permeate flux (390 Lm?2h-1) and oil rejection (95%) were recorded in alkaline pH. The fabricated Si3N4 ceramic membranes were completely recovered (≤99%) by simple thermal treatment at 400 °C.  相似文献   

12.
Microfiltration (MF) and ultrafiltration (UF) systems, as an alternative to conventional water treatment for drinking water, have been developed very fast due to their ability for the removal of microbial pathogens, especially Cryptosporidium and Giardia. One of the most important tasks for the application of UF systems is to monitor membrane integrity during operation, detect and repair the defects because small defects could result in significant reduction of pathogen removal efficiency and consequently reduce UF membrane performance. The objective of this project is to develop a decision-aid tool for operators that gives them the integrity level of their plant without having to disconnect all the modules and indicates if the measured level puts in danger the plant effectiveness and so if he has to immediately repair or if he can differ the repairing.  相似文献   

13.
PET threads were incorporated in the support layer of hollow fiber membrane in axial direction as a special reinforcement material for the purpose of improving the mechanical properties of PVDF hollow fiber membranes. It was found that the reinforcement threads had a limited effect on the separation-related properties of the membrane, such as porosity and pore size, but the tensile strength of the reinforced membrane was improved several folds. Also, the criterion of choosing reinforced fiber materials was suggested.  相似文献   

14.
Removal of cadmium ion by using a hollow fiber module is investigated experimentally, and organic extradant is applied to enhance the removal rate. The roles of pH, flow rates of the aqueous phase and the organic phase, initial concentration of cadmium ion and coexisting metals are investigated to find an optimum operating condition of the module. The experimental outcome indicates that the best performance is yielded with pH of 4 and the flow rate of aqueous phase in tube side flow controls mass transfer rate. In addition, the initial concentration of 100 ppm gives the best removal. Effect of coexisting component is negligible except Zn and Cu when both of them are present at the same time.  相似文献   

15.
We have studied the CO2/CH4 mixed gas permeation through hollow fiber membranes in a permeator. An approach to characterize the true separation performance of hollow fiber membranes for binary gas mixtures was provided based on experiments and simulations. Experiments were carried out to measure the retentate and permeate flow rates and compositions at each outlet. The influences of pressure drop within the hollow fibers, non-ideal gas behavior in the mixture and concentration polarization were taken into consideration in the mathematics model. The calculation results indicate that the net influence of the non-ideal gas behavior, competitive sorption and plasticization yields the calculated CO2 permeance in a mixed gas permeator close to that obtained in pure gas tests. Whereas the CH4 permeance is higher in the mixed gas tests than that in the pure gas tests, as the plasticization caused by CO2 dominates the permeation process. As a result, the CO2/CH4 mixed gas selectivity is smaller than those obtained in pure gas tests at equivalent pressures.The calculated membrane performance shows little changes with stage cut if the effect of concentration polarization is accounted for in the calculation. The integration method developed in this study could provide more accurate characterizations of mixed gas permeance of hollow membranes than other estimation methods, as our model considers the roles of non-ideal gas behavior and concentration polarization properly.  相似文献   

16.
《Ceramics International》2021,47(24):34020-34027
Nanofiltration ceramic hollow fiber membranes were developed to simplify the manufacturing process and improve water and organic solvent permeation performance. The alumina hollow fiber support was prepared by a phase-inversion/sintering method, and a γ-Al2O3 sol was coated thereon as a selective layer. Polyvinyl alcohol and ethanol were used as the drying control chemical additive in the coating solution, so that a coating layer could be formed without defects in only one coating step. The coating layer thickness could be adjusted to 0.6–2 μm depending on the coating drawing speed. A sintering temperature of 350 °C was selected to provide both reasonable water permeability (6.91 LMH/bar) and rejection (a molecular weight cutoff of 1000 Da or less) and to form a stable γ-Al2O3 phase. In the case of a membrane that was surface-modified with (3-chloropropyl)-trimethoxysilane, the permeability of toluene and hexane was 2.3 and 4.3 LMH/bar, respectively. The newly developed ceramic membrane showed excellent permeability and separation properties, as well as potential effectiveness for organic solvent nanofiltration applications.  相似文献   

17.
Design and preparation of membranes with ultrahigh separation performance and antifouling property for oil-in-water (O/W) emulsions remains challenging. In this study, a high flux mullite/TiO2 ceramic composite membrane was prepared via multi-precipitation of TiO2 on a whisker mullite hollow fiber support synthesized by combining phase inversion and high-temperature sintering techniques. The results showed that the generated whisker mullite structure improved the permeation flux, and the micro-nano structured TiO2 functional layer endowed the membrane surface with superhydrophility and stability. The retention of the optimal composite membrane (M20T13) that was soaked in the titanium solution 20 times for 13 min each time for the O/W emulsions like n-hexane, toluene and engine oil maintained over 98 %, and the flux after 6 h filtration was 668.34 L·m−2·h−1, 487.25 L·m−2·h−1 and 258.66 L·m−2·h−1, respectively, much higher than that of the optimal substrate (F3A1, mass ratio of fly ash: Al2O3 = 3:1). Moreover, the flux recovery rate of M20T13 was much higher than that of F3A1 after chemical backwashing. This work manifests great potential in O/W treatment fields.  相似文献   

18.
Foam-like materials had attracted great interest as promising absorbent. In this study, thermoplastic polyurethane(TPU) block sponge was synthesized. Polyester(PET) braid tubular reinforced polyurethane(PU) spongy hollow fiber membrane was prepared by a concentric circular spinning method. The method was woven from an outer coated water-blown PU separation layer and inner PET braid tubular. We have developed a simple and useful preparation technique for the PU spongy hollow fiber membrane. For the first time, the PU spongy hollow fiber membrane was prepared using a coating and controlled foaming technique. The influence of toluene isocyanate index on the physical properties, morphology, and structure of flexible PU sponge was discussed in terms of water contact angle(CA), pure water flux(PWF), Fourier Transform Infrared Analysis(FTIR),pressure-responsive property, and pull-out strength. The morphologies of the membranes were investigated by scanning electron microscopy. We have characterized the foams from an intuitive point of view and demonstrated that the dimensional morphology of the membrane was closely related to isocyanate index. The result showed that the surface cell size of the PU sponge hollow fiber membrane gradually decreased with an increase of the isocyanate index. Due to the elasticity of PU at room temperature, the pressure responsive characteristic of the membrane was prepared. When isocyanate index was 1.05, the interface bonding strength of PU spongy hollow fiber membranes reached as high as 0.37 MPa, porosity and PWF were 71.5% and 415.5 L·m~(-2)·h~(-1),respectively.  相似文献   

19.
Separation of lanthanum and neodymium by supported liquid membrane has been studied. Synergistic extraction and recovery of lanthanum and neodymium with thenoyltrifluoroacetone (HTTA) in benzene have been found by the addition of Trioctylamine (TOA). Results indicate that percentage of extraction is highly dependent on pH of feed solution, which the maximum value is 2.5. When TOA was added to HTTA, the percentage of extraction and recovery considerably increased due to synergism. Lanthanum can be extracted and recovered more than neodymium because of the adduct formation constant,β 1 . Theβ 1 values decreased with an increase in atomic number of lanthanide and showed a difference between lanthanum and neodymium. Percentage of extraction and recovery is enhanced when the HTTA concentration is increased, but its difference is larger when TOA concentration is increased. Finally, multi-column module of supported hollow fiber membrane was used and the percentage and difference of extraction and recovery was found to be more increased due to resident time.  相似文献   

20.
This research study was aimed at recovering palladium from used aqua regia by means of a hollow fiber thoroughly supported with liquid membrane. The liquid membrane, consisting of two extractants—thioridazine HCl and oleic acid-solubilized in chloroform—was used to coat the rmcroporous hollow fiber throughout. Sodium nitrite, a stripping agent, which was fed through the shell side, flowed counter-currently with the feed solution fed via the tube side. The following factors were investigated: the concentrations of the two extractants and of sodium nitrite, the pH of used aqua regia, the flow rates of both the feed and stripping solution, and the number of runs in the hollow fiber module. It was found that after a 30-mmute operation, 29.10% of palladium ion was optimally recovered at 0.0005-M thioridazine and 0.05-M oleic acid. With reference to the precious metals recovered, the following order was recorded: Pd(II)>Pt(IV)>Cu(II)>Au(III). It was observed that synergistic extraction could be gained at the concentration level of the extradants, regulated in the experiment. The liquid membrane system had long-term stability and even after the third run, it could still recover palladium up to 65%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号