首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
孙彩霞  马磊  徐杰  王复东  张涛 《化工进展》2005,24(5):493-497
综述了磺化聚酰亚胺作为质子交换膜燃料电池中膜材料的研究概况。介绍了其制备方法,总结了磺化聚酰亚胺结构对膜性能的影响。重点讨论了提高磺化聚酰亚胺质子交换膜电导率的途径和影响水解稳定性的因素,结果表明:纳米孔和相分离结构有助于提高质子电导率;磺化聚酰亚胺的水解稳定性不仅与吸水率有关,还与分子链的柔性和二胺单体的碱性有关。  相似文献   

2.
张鹏军  王强  夏裴文  祁婷  丁保宏  臧树良 《塑料》2020,49(2):95-98,104
聚酰亚胺分离膜(PI)是由芳香二酐和二胺单体缩聚而成的,它是主链含有酰亚胺环的一类高聚物。因其具有良好的气体分离性能、热稳定性、耐溶剂性等特性而受到人们的广泛关注。但是,其气体渗透-选择性的平衡问题限制了其在气体分离领域的广泛应用。因此,研究者们将目光转向了聚酰亚胺膜气体渗透性的改性方面,使其具有良好的气体渗透性,用于混合气体的高效分离。文章综述了近年来研究者对聚酰亚胺气体渗透性的研究进展,详细介绍了共混改性、交联改性和分子结构改性方面的最新研究成果,并总结展望了聚酰亚胺膜今后的研究趋势。为未来高效分离膜的研发提供了参考。  相似文献   

3.
Semi‐interpenetrating polymer network (semi‐IPN) membranes based on novel sulfonated polyimide (SPI) and poly (ethylene glycol) diacrylate (PEGDA) have been prepared for the fuel cell applications. SPI was synthesized from 1,4,5,8‐naphthalenetetracarboxylic dianhydride, 4,4′‐diaminobiphenyl 2,2′‐disulfonic acid, and 2‐bis [4‐(4‐aminophenoxy) phenyl] hexafluoropropane. PEGDA was polymerized in the presence of SPI to synthesize semi‐IPN membranes of different ionic contents. These membranes were characterized by determining, ion exchange capacity, water uptake, water stability, proton conductivity, and thermal stability. The proton conductivity of the membranes increased with increasing PEGDA content in the order of 10?1 S cm?1 at 90°C. These interpenetrating network membranes showed higher water stability than the pure acid polyimide membrane. This study shows that semi‐IPN SPI membranes based on PEGDA which gives hydrophilic group and structural stability can be available candidates comparable to Nafion® 117 over 70°C. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
Proton-exchange membrane fuel cells (PEMFCs) are considered to be a promising technology for efficient power generation in the 21st century. Currently, high temperature proton exchange membrane fuel cells (HT-PEMFC) offer several advantages, such as high proton conductivity, low permeability to fuel, low electro-osmotic drag coefficient, good chemical/thermal stability, good mechanical properties and low cost. Owing to the aforementioned features, high temperature proton exchange membrane fuel cells have been utilized more widely compared to low temperature proton exchange membrane fuel cells, which contain certain limitations, such as carbon monoxide poisoning, heat management, water leaching, etc. This review examines the inspiration for HT-PEMFC development, the technological constraints, and recent advances. Various classes of polymers, such as sulfonated hydrocarbon polymers, acid-base polymers and blend polymers, have been analyzed to fulfill the key requirements of high temperature operation of proton exchange membrane fuel cells (PEMFC). The effect of inorganic additives on the performance of HT-PEMFC has been scrutinized. A detailed discussion of the synthesis of polymer, membrane fabrication and physicochemical characterizations is provided. The proton conductivity and cell performance of the polymeric membranes can be improved by high temperature treatment. The mechanical and water retention properties have shown significant improvement., However, there is scope for further research from the perspective of achieving improvements in certain areas, such as optimizing the thermal and chemical stability of the polymer, acid management, and the integral interface between the electrode and membrane.  相似文献   

5.
A new method to synthesize polymer electrolyte membranes based on charge‐transfer (CT) complexes for high temperature fuel cells is investigated. Aliphatic sulfonated polyimide (SPI) CT complex hybrid films are prepared. Aliphatic units are introduced into the SPI main chain to increase the elasticity compared with aromatic SPI films. Electron‐donating compounds are included to form a CT complex, resulting in improved control over mechanical strength, water uptake, and thermal stability. The resulting thermal properties of the SPI CT films are sufficient to operate at elevated temperature (up to 120 °C), and the proton conductivity is comparable to that of Nafion 115. These films are thus promising alternative membranes for high temperature polymer electrolyte fuel cell applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46087.  相似文献   

6.
The porous polyimide films were prepared by a wet phase inversion process. The influence of coagulating non-solvent on morphology, pore size and porosity of porous films was investigated. A series of pore-filling sulfonated polyimide (PFSPI) membranes, which derived from a homogenous spongy-like porous polyimide film as matrix filled with sulfonated copolyimides, were prepared and characterized. These PFSPI membranes exhibited excellent thermal stability with desulfonation temperature of 283–330 °C and good oxidative stability in Fenton's agent due to the protective effect of porous polyimide matrix on the sulfonic acid groups. The swelling of PFSPI membranes could be effectively suppressed by the porous matrix, which leads to the excellent dimensional stability and good water stability of membranes. The PFSPI membranes exhibited high proton conductivity at elevated temperature. All the PFSPI membranes displayed better permselectivity as compared with Nafion 115, which is attributed to their much lower methanol permeability.  相似文献   

7.
The porous polyimide membranes were prepared by a wet phase inversion process based on the organo-soluble polyimide. The influence of coagulation bath composition and casting polymer solution concentration on the morphology of membranes was investigated. A series of spongy-like porous polyimide membranes with different porosity were obtained and characterized. These porous polyimide membranes exhibited excellent thermal stability and dimensional stability with the glass transition temperature of 274 °C and thermal shrinkage less than 1% after stored at 200 °C. All the porous polyimide membranes exhibited good wettability with electrolyte uptake of 190–378% due to their high surface polarity and high porosity. The discharge curves for the lithium-ion cells using porous polyimide membranes as separator displayed relatively flatter voltage plateaus than that for Celgard 2400 membrane and gave the discharge capacity of 129–131 mAh/g. The thermal stable porous polyimide membranes are favorable to be applied as separator in the lithium-ion cell and can be expected to provide excellent battery performance at elevated temperature.  相似文献   

8.
Haibing Wei 《Polymer》2011,52(13):2735-2739
In the pursuit of the hydrolytically stable sulfonated polyimide (SPI) membranes with high proton conductivity for fuel cell applications, a series of novel SPI ionomers derived from benzophenone-4,4′-bis(4-thio-1,8-naphthalic anhydride) (BPBTNA) were conveniently synthesized. The accelerated water stability tests demonstrated that the resultant SPI membranes kept highly the original mechanical properties even after 24 h in water at 140 °C. The membranes exhibited a microphase-separated structure with high morphological stability, and well-collected hydrophilic domains that could work as proton transport channels. The proton conductivity of 1c with an IEC of 1.90 meq g−1 was higher than that of Nafion at 100% relative humidity (RH).  相似文献   

9.
李英  张香平 《化工进展》2018,37(9):3446-3453
高温质子交换膜燃料电池在降低燃料电池水热管理复杂性、催化剂中毒方面有明显优势;可改善电池阴阳两极尤其是阴极氧气还原反应的动力学特性,提高电池的效率。聚合物电解质膜作为关键材料之一,在高温时易失水导致质子传导率降低、机械强度和热稳定性不高等问题。本文基于磺酸、磷酸和离子液体等不同质子传递介质,对高温聚合物电解质膜进行综述,比较了各类聚合物电解质膜的优缺点及应用时存在的问题,着重探讨嵌段共聚物在高温聚合物电解质膜方面的潜在应用,指出离子液体的添加不但可作为质子载体,而且在构建嵌段聚合物结构方面可发挥"诱导剂"作用。提出通过分子设计可更好了解嵌段聚合物的空间构效关系,进而通过结构设计提高膜的质子传导性能和稳定性。  相似文献   

10.
Ex situ hydrolytic stability of sulfonated polyimide (s-PI) membranes for fuel cells was studied depending on structural and external parameters including the ion exchange capacity, the block character, the temperature and the hydrogen peroxide concentration. Infrared spectroscopy was used to identify and quantify the chemical modifications such as the loss of imide functions and of ionic monomers. The decrease in ion exchange capacity due to the elution of sulfonated oligomers was confirmed by sulfur content analysis. A complete hydrolysis of some of the imide functions is observed leading to polymer chain scissions and to the loss of the mechanical properties. It is shown to be a thermo activated process and the activation energy (60 kJ/mol) is found in good agreement with the value determined from fuel cell lifetimes. The degradation in fuel cell conditions is similar but faster than in pure water. The same kinetic can be reproduced ex situ by addition 0.05% of hydrogen peroxide.  相似文献   

11.
Organic-inorganic composite membranes for operation above 100 °C in polymer electrolyte membrane fuel cells (PEMFCs) were prepared, characterized and cell-tested. Composite membranes were obtained by mixing organic polymers, which have a SO3H group as a proton conductor with inorganic material, SiO2, using the sol-gel process. Electron probe micro analyser (EPMA) was used to show the homogeneous and uniform distribution of SiO2. The physico-chemical properties of all membranes were investigated regarding their tensile strength, water uptake and thermogravimetric analyzer (TGA). Due to a higher water uptake and thermal stability of composite membranes, the cell performances at high temperatures above 100 °C, were improved. In addition, the SiOH group in the composite membrane was shown to play a major role in capturing water strongly and maintaining proton conductivity even at high temperature. Furthermore, the fuel cell performance of organic-inorganic composite membranes was superior to that of the Nafion membrane at high current density over all ranges of temperature.  相似文献   

12.
以含支链3,3′-二乙基-4,4′-二氨基二苯甲烷(M-OEA)为二胺单体,采用高温一步法与四种二酐进行聚合,合成了四种聚酰亚胺(PI)树脂,并制备了一系列聚酰亚胺薄膜。对聚酰亚胺树脂进行了溶解性测试,并通过傅里叶红外光谱、紫外-可见分光光度计、差示扫描量热仪、热重分析仪、静态热机械分析仪及电子万能材料试验机对PI薄膜的结构、光学性能、热性能和力学性能进行了表征。结果表明,该系列树脂溶解性优异,薄膜热稳定性良好,5%热失重温度(Td5)均在390℃以上,玻璃化转变温度(Tg)均高于230℃,两种半脂环族PI薄膜的光学性能优异,紫外截止波长280 nm。  相似文献   

13.
详细综述了用于渗透汽化分离的聚酰亚胺膜的改性研究进展,重点评述了共聚(改变主链结构、侧基结构和引入特殊功能性单体)、填充(无机物填充和有机物填充)、交联、共混以及表面改性5种改性方法,包括其反应原理、设计思路以及对聚酰亚胺膜分子结构和分离性能的影响等。同时通过比较不同改性方法的研究结果,分析了几种改性方法在渗透汽化膜分离方面的优点和不足。在此基础上,对聚酰亚胺渗透汽化膜的改性方法发展方向和研究前景进行了总结。  相似文献   

14.
Composite membranes for direct methanol fuel cells (DMFCs) were prepared by using Nafion115 membrane modification with polyvinyl alcohol (PVA), polyimide (PI) and 8-trimethoxysilylpropyl glycerin ether-1,3,6-pyrenetrisulfonic acid (TSPS). The performance of the composite membranes was evaluated in terms of water sorption, dimensional stability, thermal stability, proton conductivity, methanol permeability and cell performance. The proton conductivity was slightly decreased by 1-3% compared with Nafion115, which still kept the high proton conduction of Nafion115. The methanol permeability of Nafion/PI-PVA-TSPS composite membranes was remarkably reduced by 35-55% compared with Nafion115. The power density of DMFCs with Nafion/PI-PVA-TSPS composite membranes reached to 100 mW/cm2, exceeding that with Nafion115 (68m W/cm2).  相似文献   

15.
不同亚胺化温度对聚酰亚胺无纺布膜性能的影响   总被引:1,自引:0,他引:1  
本文以聚酰亚胺酸(PAA)为纺丝液,采用高压静电纺丝技术制备了醚酐型(ODPA—ODA型)PAA无纺布,通过不同的亚胺化温度获得ODPA—ODA型聚酰亚胺(PJ)无纺布。利用红外光谱仪、扫描电子显微镜和电子万能试验拉伸机研究了不同亚胺化温度对PI无纺布性能的影响。结果表明:当亚胺化温度为250℃时,聚酰胺酸只是部分发生了亚胺化;亚胺化温度为300℃,聚酰胺酸开始完全亚胺化成为聚酰亚胺,同时,聚酰亚胺纤维出现了不同程度的收缩、弯曲和交联;当亚胺化温度从2500(2升高到300℃时,PI无纺布薄膜的拉伸强度由4.92MPa提高到7.76MPa,断裂伸长率从11.3%增加到29.5%。  相似文献   

16.
本研究选择了改性聚酰亚胺、改性聚甲醛、改性尼龙三种材料应用于摩托车衬套制品,进行了对比试验,结果表明:采用改性聚酰亚胺的衬套具有强度高、耐磨损、尺寸稳定性好等特点,完全达到该产品设计的要求。  相似文献   

17.
含苯炔基侧链的聚酰亚胺树脂及其复合材料   总被引:1,自引:1,他引:1  
采用联苯酐(3,4′-BPDA)与4,4′-二氨基二苯醚(4,4-ODA),3,5-二氨基-4′-苯炔基二苯甲酮(DPEB),苯炔基苯酐(PEPA)制备了不同分子质量的聚酰亚胺树脂。通过流变分析,热重分析,红外光谱,动态热力学分析及静态力学性能测试等研究了分子结构,分子质量等因素对聚酰亚胺树脂耐热性和力学性能的影响。结果表明,合成的聚酰亚胺树脂具有优异耐热性能和较高的韧性,固化后树脂的玻璃化转变温度为379℃,5%热失重温度高于550℃,并且浇注体的拉伸强度是61 MPa,断裂伸长率是6.2%.碳纤维复合材料的室温弯曲强度为1 850 MPa,层间剪切强度为84 MPa,316℃时弯曲强度为946 MPa,剪切强度为46 MPa,具有良好的高温力学保持率。  相似文献   

18.
Preparation and Properties of Conductive Polyimide Films   总被引:1,自引:0,他引:1  
Carbon black and graphite granules were added to polyimide resin and the mixture was processed into films. The surface resistivity of the polyimide film can be as low as 0.1 /cm2 upon the addition of these conductive granules. The effect of the content of conductive granules on the properties of polyimide, such as the conductivity, thermal stability, and the surface roughness, was studied. The results showed that smaller granule or higher content would enhance the conductivity but made the processing more difficult. The surface roughness was affected by the type of carbon black, the content, and the preparation conditions. For Pyre-ML type polyimide resin containing 9% of 975 carbon black, the thermal degradation temperature could reach as high as 610°C.  相似文献   

19.
熊子昂  舒婷  田新龙  党岱  廖世军 《化工进展》2014,33(8):2012-2017
空气自呼吸质子交换膜燃料电池具有系统体积小、能量密度高、能量转化效率高和清洁无污染、无需复杂的空气供给及增湿系统等优点,是极具商业前景的新一代中小功率便携式电源,其相关研究为燃料电池领域的热点研究课题。本文综述了近年来此类电池在结构、机理、组成元件、性能等方面的研究进展,认为改善阴极催化层孔隙率和疏水性等能显著加快氧气传输和水移除,提高氧气活化能力;气体扩散层的组成、结构和厚度亦影响其气体透过性和水移除效果;合适的结构设计和材料选取能调节池体温度,强化空气对流;膜电极免增湿技术的应用可以维持电池在低湿度下较高质子传导率和系统稳定性,这是空气自呼吸质子交换膜燃料电池实现商业化的重要研究方向。  相似文献   

20.
乔磊 《上海化工》2004,29(12):29-32
由于Nafion膜在工作温度超过90℃的燃料电池中,或者是在直接甲醇燃料电池中的种种不良表现使得燃料电池的应用得到制约,所以发展新型导电聚合物电解质膜就与聚台物燃料电池的发展紧密联系在一起。近些年来这个领域的研究成果包括新的离子聚合物、用于控制形态及保水能力的纳米无机颗粒复合膜,以及碱性聚合物与含氧酸的络合物等。而聚酰亚胺,作为一种耐高温的含氮杂环碱性聚合物,在电解质燃料电池中正表现出广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号