首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combination of ring-opening polymerization and atom-transfer radical polymerization was used to synthesize a four-arm star-shaped poly(ε-caprolactone)-b-poly(2-hydroxyethyl methacrylate). The structure of obtained copolymer was determined by Fourier transform infrared, 1H and 13C NMR spectroscopies. The uniform electroactive nanofibers consisting blend of four-arm star-shaped poly(ε-caprolactone)-b-poly(2-hydroxyethyl methacrylate) copolymer and polyaniline were produced using electrospinning technique. The electroactivity of prepared nanofibers was investigated using cyclic voltammetry measurement. The morphologies of electrospun nanofibers produced from four-arm star-shaped poly(ε-caprolactone)-b-poly(2-hydroxyethyl methacrylate) and their blends with polyaniline were investigated by the scanning electron microscopy. The presence of polyaniline resulted in significant decrease of sticking fibers.  相似文献   

2.
Developing biologically mimetic nanofibers (NFs) is crucial for their applications as scaffolds in tissue engineering and drug carriers. Herein, we present a strategy to facilely fabricate core-sheath NFs using coaxial electrospinning technique. Poly(ε-caprolactone) (PCL) and silk fibroin (SF) were employed as component materials to construct PCL/SF NFs with PCL cores uniformly encapsulated by SF sheaths. Scanning electron microscopy and transmission electron microscopy demonstrate a uniform core-sheath structure of the coaxial NFs. The engineered core-sheath structure confers the composite NFs with greatly improved properties including surface hydrophilicity and mechanical properties. In vitro cell culture validates that the core-sheath NFs are favorable to the cultured rat pheochromocytoma cells (PC 12) attachment. To further demonstrate the advantage of the coupled structural integrity, the PCL/SF core-sheath NFs were compared with the NFs produced from PCL and SF blend. Results showed that the PCL/SF NFs possessed a tensile strength of ~6.93 ± 0.52 MPa and an elongation at break of ~294.31 ± 24.17%, whereas the blend NFs possessed ~5.55 ± 0.50 MPa and ~88.05 ± 13.98%, respectively. Dexamethasone-phosphate sodium (DEX) was employed as a model drug, whereby the in vitro release study indicates that the NFs exhibit an ideal releasing profile, capable of releasing DEX continuously over a period of 450 h. The constructed PCL/SF core-sheath NFs are promising candidates for biomedical applications. POLYM. ENG. SCI., 60:802–809, 2020. © 2020 Society of Plastics Engineers  相似文献   

3.
Summary Large diversity of tailor-made poly[(ε-caprolactam)-co-(ε-caprolactone)] P[(CLA)-co-(CLO)] and poly[(ε-caprolactam)-co-(δ-valerolactone)] P[(CLA)-co-(VLO)] copolymers have been obtained via activated anionic polymerization of ε-caprolactam (CLA) with sodium caprolactam (NaCL) as a basic initiator. In the present study several poly(ε-caprolactones) (PCLOs) and poly(δ-valerolactone) polyols were employed as effective bifunctional polymeric activators (PACs) and suitable comonomers of CLA. The obtained poly(esteramides) PEAS were isolated and their structure was confirmed by the 1H NMR and FTIR spectroscopy. The influence of the molecular weight and type of the PACs, the CLA/PAC ratio and polymerization conditions on the conversion, intrinsic viscosity and polymerization kinetic was explored. The results demonstrated that the use of the PACs reduces the polymerization time to several minutes and polymerization process proceeds without induction period at low energy of activation and high yield of copolymers. Evaluation of the PACs activity and the activation energy confirmed that the PACs are highly active compounds efficient to CLA features modification.  相似文献   

4.
A new surface modification method to improve the graft polymerization of ε-caprolactone (CL) on MgO surface was developed. The MgO nanoparticles were first modified with ethylene glycol (EG), and then used for initiating graft polymerization of CL. The modified MgO nanoparticles were attested by fourier transform infrared spectroscopy, thermal gravimetric analysis and dispersion stability test. The results showed that EG was successfully grafted onto the MgO surface, the hydroxyl group of the grafted EG initiated the graft polymerization of CL onto the MgO surface in the presence of stannous octanoate. The PCL grafting amount (11.13%) on MgO modified with EG (MgO-EG) is much higher than that of unmodified MgO (3.95%). MgO-EG-PCL with 11.13 wt% of grafted PCL exhibited the most excellent dispersibility in chloroform. The MgO-EG-PCL/PCL composites exhibited the most significant improvement, tensile strength and the elongation at break of PCL increased from 15.64 to 19.58 MPa and from 272.34% to 420.73%, respectively.  相似文献   

5.
To obtain flexile poly(lactic acid)-based melt-blown nonwoven filtration material, poly(lactic acid)/poly(?-caprolactone) melt-blown nonwoven with various components were melt-spun by melt-blown processing in the Melt-blown Experiment Line. The 3 wt.% tributyl citrate to poly(?-caprolactone) was added in the composites as compatibilizer. The effect of poly(?-caprolactone) on the structure, morphology, mechanical and filtration properties of poly(lactic acid)/poly(?-caprolactone) melt-blown nonwoven was reported. Scanning electron microscopy micrographs revealed good dispersion of the additive in the fiber webs. The crystallinity of melt-blown webs with poly(?-caprolactone) was more than that of poly(lactic acid) alone. The tensile strength, ductility and air permeability of poly(lactic acid) melt-blown nonwovens were enhanced significantly. The input of poly(?-caprolactone) increased the diameter of fibers and decreased the filtration efficiency of poly(lactic acid)/poly(?-caprolactone) melt-blown nonwoven.  相似文献   

6.
A family of poly(caprolactone) (PCL)-based oligomeric additives was evaluated as plasticizers for poly(vinyl chloride) (PVC). We found that the entire family of additives, which consist of a PCL core, diester linker, and alkyl chain cap, were effective plasticizers that improve migration resistance. The elongation at break and tensile strength of the blends made with the PCL-based additives were comparable to blends prepared with diisononyl phthalate (DINP), a plasticizer typically used industrially, and diheptyl succinate (DHPS), an alternative biodegradable plasticizer. Increasing concentration was found to decrease glass transition temperature (Tg) and increase elongation at break, confirming their role as functional plasticizers. We found that all of the PCL-based plasticizers exhibited significantly reduced leaching into hexanes compared to DINP and DHPS. The PCL-based plasticizers with shorter carbon chain lengths reduced leaching more than those with longer carbon chain lengths.  相似文献   

7.
In order to increase the miscibility in the blend of poly(β-hydroxybutyrate) [PHB] and poly(ε-caprolactone) [PCL], PHB/PCL copolyesters were used as compatibilizers. These PHB/PCL copolyesters were synthesized by transesterification in solution phase. The melting point [Tm] depression, which was not observed in PHB/PCL blend without compatibilizer, was observed when PHB/PCL copolyesters as compatibilizers were added to the PHB/PCL blend system. As the amount of compatibilizer added to the blend increased, the crystallization temperature [Tc] of PCL in the blend increased and Tc of PHB in the blend decreased. The difference in Tc between PHB and PCL was gradually reduced. When the sequence length of PHB block and PCL block in the PHB/PCL copolyester increased, the miscibility of the blend increased. This is evidenced by the depression in the Tm of PHB and PCL in the blend and by the decrease in the difference of Tc between PHB and PCL. From the polarizing optical micrographs, the phase separation in PHB/PCL blend was observed. However, in the presence of PHB/PCL copolyester, the spherulite of PHB grows in equilibrium with one phase melt. Received: 27 July 1998/Revised version: 12 October 1998/Accepted: 4 November 1998  相似文献   

8.
Poly(L-lactic acid) (PLLA) was blended with poly(butylenesuccinate) (PBS) using a single-screw extruder to modify the poor characteristics of these polymers. Furthermore, when both polymers were blended, the graft copolymer that was synthesized by partially saponified poly(vinyl alcohol) (PSPVA) and ?-caprolactone (?-CL) was used as a novel compatibilizer. The structure of the synthesized compatibilizer was determined by 1H or 13C NMR. From this result, the ring-opening polymerization of the ?-CL occurred at the hydroxyl group of PSPVA. The structures of the PLLA/PBS solvent-cast blended films could be observed via an optical microscope. From the optical microscopic observation, the structures of the solvent-cast blended films with the synthesized compatibilizer were more homogeneous than those of the solvent-cast blended films without the compatibilizer. The mechanical properties of the PLLA/PBS extruded blended films were determined by a tensile test. The result showed the tensile strength of the blended films with the synthesized compatibilizer was greater than that of the blended films without the compatibilizer.  相似文献   

9.
Poly(ε-caprolactone) (PCL) is a bioresorbable and biocompatible polymer with assorted medical applications. However, remarkable hydrophobicity and nonosteoconductivity have stood as a barrier to limit its applications. The present study aims to modify the bulk characteristics of PCL to develop a polymeric scaffold with adequate structural and mechanical properties to support regenerated tissues. For this purpose, functionalized bacterial cellulose nanowhiskers (BCNW-g-βCD-PCL2000) are synthesized. Reinforcing PCL matrix with 4 wt % of the nanowhiskers resulted in a bionanocomposite with promoted bulk properties. Compared to neat PCL, the obtained bionanocomposite shows improvements of 115 and 51% in tensile strength and Young's modulus, respectively; 20% increase in hydrophilicity; 7% increase in degradation rate; and 6% decrease in crystallinity. Gas foaming/combined particulate leaching technique is used to develop highly porous structures of 86–95% porosity with interconnected macropores of mean pore diameters of 250–420 μm. Porous scaffolds showed compression modulus values of 5.3–9.1 MPa and would have promising applications in regenerative medicine. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48481.  相似文献   

10.
Blends between poly(?-caprolactone) and poly(methyl methacrylate-co-butyl methacrylate) were prepared by solution blending in the presence of dichloromethane as solvent. The compatibility of the blends was studied by Fourier-transform infrared spectroscopy, Raman spectroscopy, micro-Raman imaging, and thermogravimetric analysis. Cytotoxicity assays were also performed to assess the feasibility of using such materials in veterinary devices. Based on results, we conclude that poly(?-caprolactone) and poly(methyl methacrylate-co-butyl methacrylate)-form compatible blends owing to specific interactions between carbonyl groups of poly(methyl methacrylate-co-butyl methacrylate) and hydrogens present in the polymeric chain of poly(?-caprolactone). Furthermore, these materials were not toxic to bovine fibroblasts, which supports their possible use in cattle veterinary devices.  相似文献   

11.
Poly(vinyl alcohol) (PVA)/poly(γ-benzyl L-glutamate) (PBLG) blend membranes with different PBLG wt contents were prepared by pervaporation. Structure and surface morphologies of PVA/PBLG blend membranes were investigated by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Thermal, mechanical, and chemical properties of PVA/PBLG blend membrane were studied by differential scanning calorimeter (DSC), tensile strength tests, and other physical methods. It was revealed that the introduction of PBLG homopolymer into PVA could exert an outstanding effect on the properties of PVA membrane.  相似文献   

12.
One-pot synthesis of graft copolymers by ring-opening polymerization and free radical polymerization using polymeric linoleic acid peroxide (PLina) is reported. Graft copolymers having structures of poly(linoleic acid)-g-polystyrene-g-poly(ε-caprolactone) were synthesized from PLina, possessing peroxide groups on the main chain by the combination of free radical polymerization of styrene and ring-opening polymerization of ε-caprolactone in one-step. Principal parameters, such as monomer concentration, initiator concentration, and polymerization time, which effect the one-pot polymerization reactions were evaluated. The obtained graft copolymers were characterized by 1H-NMR and DOSY-NMR spectroscopy, gel permeation chromatography, thermal gravimetric analysis and differential scanning calorimetry techniques.  相似文献   

13.
We developed a dynamic cell culture platform with dynamically tunable nano-roughness and elasticity. Temperature-responsive poly(ɛ-caprolactone) (PCL) films were successfully prepared by crosslinking linear and tetra-branched PCL macromonomers. By optimizing the mixing ratios, the crystal-amorphous transition temperature (Tm) of the crosslinked film was adjusted to the biological relevant temperature (~33 °C). While the crosslinked films are relatively stiff (50 MPa) below the Tm, they suddenly become soft (1 MPa) above the Tm. Correspondingly, roughness of the surface was decreased from 63.4–12.4 nm. It is noted that the surface wettability was independent of temperature. To investigate the role of dynamic surface roughness and elasticity on cell adhesion, cells were seeded on PCL films at 32 °C. Interestingly, spread myoblasts on the film became rounded when temperature was suddenly increased to 37 °C, while significant changes in cell morphology were not observed for fibroblasts. These results indicate that cells can sense dynamic changes in the surrounding environment but the sensitivity depends on cell types.  相似文献   

14.
Copper (II) oxide nanoparticles supported within poly(vinyl alcohol)/poly(vinyl pyrrolidone) films have been successfully prepared through ultrasonication method. It is discernible that before the preparation of blends, the surface of copper (II) oxide nanoparticles was modified with citric acid and vitamin C as biosafe capping agents. X-ray diffraction scans illustrated the semicrystalline nature of the obtained pure blend and exhibited a good combination between the blend and the modified copper (II) oxide nanoparticles. Also, thermal stability of blends was improved in comparison to the pure polymer blend with increasing modified copper (II) oxide nanoparticles.  相似文献   

15.
The poly(ɛ-caprolactone)/poly(ethylene glycol) (PCL/PEG) blends reveal a miscibility window of upper critical solution temperature (UCST) character. The kinetics of liquid–liquid phase separation (LLPS) for the blends of PCL/PEG is investigated by time-resolved small angle light scattering (TRSALS). The time evolution of scattering profile is analyzed by linear Cahn–Hilliard theory for early stage of spinodal decomposition (SD). The evolution of the maximum intensity Im(t) and the corresponding wavenumber qm(t) obey the power-law scheme (Im(t)∼tβ and qm(t)∼t−α). A relation of β=3α in late stage is obtained almost the same scaling exponents with β≅1 and α≅1/3 for various quenching depths. The α≅1/3 implied that a coarsening mechanism at the late stage of phase separation may proceed with Ostwald ripening or Brownian coalescence process. Besides, the intermediate and late stages of SD can be scaled into a universal from represented well by Furukawa’s structure factor. The percolation to cluster transition is accompanied with α∼0.13→1/3 from intermediate to late stage of SD for the off-critical mixture of PCL/PEG (4/6) blend. In this study, the experimental result demonstrates that the crystallization is a viable mechanism to lock phase-separated structure of the blends. The competition between phase separation and crystallization has been suggested to determine the final morphology.  相似文献   

16.
Poly(DL-lactide-co-ε-caprolactone) (PLCL) and poly(DL-lactide-co-glycolide) (PLGA) blends of various compositions were prepared. Fractured sections of PLCL/PLGA blends did not evidence phase separation and blend glass transition temperatures suggested some degree of blend compatibility. The elastic modulus showed a negative deviation from the additive law of mixture. Superior biocompatibility in terms of fibroblast NIH 3T3 cell adhesion and proliferation, better mechanical properties, and a more homogeneous phase were obtained with PLCL/PLGA 25/75 blend. Rapid degradation of PLCL phase (4–8 weeks) in PLCL/PLGA 25/75 blend led to a porous structure, which makes it a potential candidate for drug delivery systems.  相似文献   

17.
α,ω-Hydroxy telechelic poly(ε-caprolactones) were prepared by ring-opening polymerization of the ε-caprolactone catalyzed by ammonium decamolybdate in the presence of different aliphatic diols [HO–(CH2)m–OH, where m?=?2, 4, 6, 8, 10, 12, 14, and 16] as initiators to obtain a family of α,ω-hydroxy telechelic poly(ε-caprolactone) [HO–PCL–O–(CH2)m–O–PCL–OH, m?=?2, 4, 6, 8, 10, 12, 14, and 16]. The content of the alkyl group (AG) (–(CH2)m–) had an important effect on the crystallinity (xi) of α,ω-hydroxy telechelic poly(ε-caprolactone), showing a proportional relationship. In poly(ester-urethanes) derived from α,ω-hydroxy telechelic poly(ε-caprolactones) and 1,6-hexamethylene diisocyanate, the AG also showed a similar effect on the xi and eventually on the mechanical properties, increasing the values of the modulus. Therefore, AG content was a factor to induce a plastic behavior in poly(ester-urethanes). The effect of AG on the water uptake of poly(ester-urethanes) after 1 week was negligible.  相似文献   

18.
Summary Rheological properties of poly(-caprolactone) (PCL) and Poly (styrene-co-acrylonitrile) (SAN) blends were examined as a function of the acrylonitrile (AN) content in SAN, to systematically understand the correlation between the interaction parameter and the theological properties of miscible polymer blends. When the plateau modulus (G N 0) and zero shear viscosity ( 0) of the PCL/SAN blends are plotted against the AN content in SAN, a minimum is observed. Qualitatively, the results obtained parallel the variation of the interchain interaction with the AN content. The negative deviation ofG N 0 and 0 from linearity seems to be attributed to the increase in the entanglement molecular weight between dissimilar chains which results from the chain extension caused by interchain interaction.  相似文献   

19.
20.
Immobilized lipase B from Candida antarctica was used to synthesize copolymers of poly(ε-caprolactone) (PCL) with α,ω-(dihydroxy alkyl) terminated poly(dimethylsiloxane) (PDMS). The reactions were carried out in toluene with a 1:2 w/v ratio of the monomers to solvent at 70 oC. The PCL−PDMS−PCL triblock copolymer composition was varied by changing the feed ratio of the reactants [CL]/[PDMS] (80:20; 60:40; 40:60; 20:80 w/w, respectively). The enzymatically synthesized copolymers were characterized by GPC, FTIR, TGA, DSC and XRD. The successful synthesis of the copolymers was confirmed by the appearance of a single peak in all of the respective GPC chromatograms. An increased feed ratio of [CL]/[PDMS] produced an increase in the number-average molecular weight (Mn) of the copolymers from 4,400 g mol−1 (20:80 w/w of [CL]/[PDMS]) to 13,950 g mol−1 (80:20 w/w of [CL]/[PDMS]). The copolymers were shown by DSC and XRD to be semi-crystalline and the degree of crystallinity increased with an increase in the [CL]/[PDMS] feed ratio. The crystal structure in the copolymers was analogous to that of the PCL homopolymer. In enzymatic polymerization the recovery and reuse of the enzyme is highly desirable. When the lipase was recovered and reused for the copolymerization, higher molecular weight copolymers were obtained upon a second use. This appears to be due to an increased activity of the immobilized lipase following an opening up of the acrylic resin matrix in the organic medium. This improvement was not maintained for subsequent recycling of the lipase principally due to the disintegration of the acrylic resin matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号